refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon SRP076175
BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire [mRNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We examined context specific function of BRD4 in promoting lineage specific gene expression and show that BRD4 is essential for osteoblast differentiation. Overall design: We performed mRNA sequencing from hFOB cells (undifferentiated and differentiated for 5 days into osteoblastic lineage) following BRD4 inhibition by JQ1 or siRNA mediated depletion. The mRNA-Seq includes namely 7 conditions: undifferentiated hFOBs treated with DMSO or non-targeting control siRNA (siCNTR), differentiated hFOBs with DMSO or siCNTR treatments; differentiated hFOBs treated with JQ1 or two siRNAs against BRD4 (#3 & #4). The libraries were performed in triplicates.

Publication Title

BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE59456
Gene expression in rat ovaries treated with DHT
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycystic ovarian syndrome (PCOS) is an endocrine disorder of the reproductive and metabolic axis in women during the reproductive age. In this study, we used a rat model exhibiting reproductive and metabolic abnormalities similar to human PCOS to unravel the molecular mechanisms underlining this complex syndrome.

Publication Title

Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP040136
Bromodomain protein BRD4 is required for estrogen receptor-dependent transcription and enhancer activation [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The estrogen receptor-a (ERa) is a transcription factor which plays a critical role in controlling cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to induce or repress gene transcription. A deeper understanding of these transcriptional mechanisms may uncover novel therapeutic targets for ERa-dependent cancers. Here we show for the first time that BRD4 regulates ERa-induced gene expression by affecting elongation-associated phosphorylation of RNA Polymerase II (RNAPII P-Ser2) and histone H2B monoubiquitination (H2Bub1). Consistently, BRD4 activity is required for estrogen-induced proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide occupancy studies revealed an enrichment of BRD4 on transcriptional start sites as well as EREs enriched for H3K27ac and demonstrate a requirement for BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we further demonstrate that BRD4 occupancy correlates with active mRNA transcription and is required for the production of ERa-dependent enhancer RNAs (eRNAs). These results uncover BRD4 as a central regulator of ERa function and potential therapeutic target. Overall design: mRNA expression profiles of MCF7 cells treated with +/- estrogen treatment under negative control siRNA, BRD4 siRNA or JQ1 treatment, in duplicates.

Publication Title

Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43088
Genome-wide expression of transcriptomes under waterlogging stress condition in subtropical maize
  • organism-icon Zea mays
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Genome-wide transcriptome analysis was performed to understand the expression pattern of transcriptomes in tolerant and susceptible subtropical maize genotypes under waterlogging stress condition.

Publication Title

Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE52227
Discovery of genes involved in facial midline specification
  • organism-icon Gallus gallus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The patterning of the facial midline involves early specification of neural crest cells to form skeletal tissues that support the upper jaw . In order to understand the molecular mechanisms involved we have taken advantage of a beak duplication model developed in the chicken embryo. Here we can induce the transformation of the side of the beak into a second midline that is easily identifiable by the formation of a supernumerary egg tooth. The phenotype is induced by implanting two microscopic beads, one soaked in retinoic acid and the other soaked in Noggin into the side of the head of the chicken embryo. Here we use microarrays to profile expression of maxillary mesenchyme 16h after placing the beads. A subset of genes were validated using in situ hybridization and QPCR. The aims of the study are to test the function of these genes using retroviral transgenesis, knockdown with morpholinos or expression of secreted proteins and their application to the embryo.

Publication Title

Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP136738
RNA-sequencing of mouse thymic leukemias extracted from Mb1-CreDPB mice
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We examined the patterns of gene expression of mouse thymic leukemias extracted from Mb1-CreDPB mice by RNA sequencing (RNA-seq). Our goal was to integrate RNA-seq data with whole-exome sequencing (WES) to determined secondary driver mutations of leukemogenesis in the absence of Spi-B and PU.1, Overall design: Thymic leukemias were isolated from diseased Mb1-CreDPB mice. In summary, thymuses were homogenized and red blood cells were removed with ACK buffer, washed with PBS and counted. The amount of 8 million cells were pelleted an RNA was extracted using Rneasy RNA Isolation Kit (Qiagen). RNA was quantified and the purity was checked by spectophotrometer. RNA was sent to subsequently sequencing procedures.

Publication Title

Driver mutations in Janus kinases in a mouse model of B-cell leukemia induced by deletion of PU.1 and Spi-B.

Sample Metadata Fields

Disease, Disease stage, Cell line, Subject

View Samples
accession-icon GSE34756
Stump project-- mRNA whole tissue; Volar versus non-volar acral skin gene expression
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We were interesed in defining the gene signautre of volar skin.

Publication Title

To Control Site-Specific Skin Gene Expression, Autocrine Mimics Paracrine Canonical Wnt Signaling and Is Activated Ectopically in Skin Disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38512
Placental gene expression in pregnancies established after the transfer of day 7 blastocysts derived from in vitro (IVP), somatic cell nuclear transfer (SCNT) and in vivo (AI) embryos
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Aberrant placental gene expression associated with culture condition and/or deficiencies in transcriptome reprogramming are hypothesized to be the major cause of SCNT and IVP inefficiencies. Therefore, the main objective of this study was to invesitgate the dysregulated genes, molecular pathways and functional alteration in bovine placentas derived from SCNT and IVP pregnancies compared to their AI counterparts

Publication Title

Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39267
Stump project -- mRNA epidermis; Volar versus non-volar acral skin gene expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We were interested in defining the gene signature of volar skin.

Publication Title

To Control Site-Specific Skin Gene Expression, Autocrine Mimics Paracrine Canonical Wnt Signaling and Is Activated Ectopically in Skin Disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39743
Stump project-- mRNA dermis; Volar versus non-volar acral skin gene expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We were interested in defining the gene signature of volar skin.

Publication Title

To Control Site-Specific Skin Gene Expression, Autocrine Mimics Paracrine Canonical Wnt Signaling and Is Activated Ectopically in Skin Disease.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact