In order to investigate what signalling pathways are turned on by tenascin-C, we generated Mouse Embryonic Fibroblasts (MEFs) deficient for tenascin-C and compared their gene expression profile to MEFs proficient for tenascin-C.
Tenascin-C triggers fibrin accumulation by downregulation of tissue plasminogen activator.
Specimen part
View SamplesThe association of cytosine methylation and gene expression in the human kidneys is yet to be determined, here we have 25 pairs of the methylation and gene expression profile.
Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development.
Specimen part
View SamplesRadiation is an established cause of thyroid cancer and growing evidence supports a role for H2O2 in spontaneous thyroid carcinogenesis. Little is known about the molecular programs activated by these agents in thyroid cells. We profiled the DNA damage response and cell death induced by -radiation (0.15Gy) and H2O2 (0.00250.3mM) in primary human thyroid cells and T-cells. While the two cell types had more comparable radiation responses, 3- to 10-fold more H2O2 was needed to induce detectable DNA damage in thyrocytes. At H2O2 and radiation doses incurring double-strand breaks (DSB), cell death occurred after 24hrs in T-cells, but not in thyrocytes. We next prepared thyroid and T-cells primary cultures from 8 donors operated for non-cancerous pathologies and profiled their genome-wide transcriptional response 4hr after: 1) exposure to 1 Gy radiation, 2) treatment with H2O2, or 3) no treatment. Two H2O2 doses were investigated, calibrated in each cell type as to elicit levels of single- and double-strand breaks equivalent to 1 Gy -radiation. The transcriptional responses of thyrocyte and T-cells to radiation were similar, involving DNA repair and cell death genes. In addition to this transcriptional program, H2O2 also upregulated antioxidant genes in thyrocytes, including glutathione peroxidases (GPx) at the DSB-inducing dose. By contrast, a transcriptional storm involving thousands of genes was raised in T-cells. Finally, we showed that GPx inhibition reduced the DNA damaging effect of H2O2 in thyrocytes. We conjecture that defects of anti- H2O2 protection could promote spontaneous thyroid cancers.
Comparative analysis of the thyrocytes and T cells: responses to H2O2 and radiation reveals an H2O2-induced antioxidant transcriptional program in thyrocytes.
Sex, Age, Treatment, Subject
View SamplesPurpose: CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal AML (CN-AML).
Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome.
Specimen part
View SamplesGene expression profiling in dopaminergic brain structures of rats self-administering cocaine. Effect of histone deacetylase inhibition
Inhibition of histone deacetylases in rats self-administering cocaine regulates lissencephaly gene-1 and reelin gene expression, as revealed by microarray technique.
Sex, Specimen part, Treatment
View SamplesThis data was used as an example to illustrate a computational method for assessing statistical significance in microarray experiments
Assessing statistical significance in microarray experiments using the distance between microarrays.
No sample metadata fields
View SamplesWe propose a method to compare the location and variability of gene ex-pression between two groups of microarrays using a permutation test based on the pairwise distance between microarrays. The microarrays could be samples from distinct clinical or biological populations or microarrays prepared at two different levels of an experimental factor. For these tests the entire microarray or some pre-specifed subset of genes, not the individual gene, is the unit of analysis. We apply this method to compare results from two dfferent protocols for preparing labeled targets for microarray hybridization and their subsequent gene expression analysis.
Assessing statistical significance in microarray experiments using the distance between microarrays.
No sample metadata fields
View SamplesThe molecular chaperons FK506-binding proteins (Fkbps) comprise one of three families of peptidyl prolyl isomerases, which promote the transition between cis- and trans-conformations of peptidyl prolyl bonds. Mouse Fkbp family is composed of at least 15 members, but the functions of the large family in cell proliferation and differentiation remain elusive. During myoblast differentiation, the cells need to exit the cell cycle before fusion and terminal differentiation to form myotubes. The clear distinction between proliferation and differentiation provides an ideal model with which to investigate the roles of Fkbps in these two cell biological events. We found that depletion of FkbpC in mouse myoblasts delayed the exit from the cell cycle and expression of myotube-specific genes, whereas its overexpression caused opposite effects. At a mechanistic level, our study revealed a crucial function of FkbpC in Cdk4 activation during myoblast proliferation. Cdk4 undergoes conformational changes in the HSP90/Cdc37/Cdk4 complex as a prerequisite for activation through binding to CyclinD1 accompanied by phosphorylation. Our results showed that FkbpC depletion released Cdk4 from the HSP90 complex, which increased the Cdk4/CyclinD1 complex in myoblasts and sustained high levels of phosphorylated Cdk4 and Rb during differentiation. These results explain the delayed cell cycle exit and differentiation in the depleted cells. In addition, after synchronizing the cell cycle of myoblasts we found dynamic changes of the amounts of FkbpC and Cdk4 in the HSP90 complex during the G1/S transition. Knockout mice of FkbpC demonstrated delayed muscle regeneration after chemical damage, providing an in vivo evidence for the essential role of FkbpC in muscle differentiation. Collectively, our study uncovered FkbpC's critical function as a novel switch regulating the transition from proliferation to differentiation through controlling one of the central regulators of proliferation, Cdk4. Overall design: mRNA profiles of Fkbp4 knockdown, Fkbp5 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Promotion of Myoblast Differentiation by Fkbp5 via Cdk4 Isomerization.
Specimen part, Cell line, Subject, Time
View SamplesMantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of BCR signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 (CBM) complex that transfers BCR signaling to the NF-kB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls a MYC-driven gene expression network predominantly through increased MYC protein stability. Thus our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1 induced MYC regulation is not restricted to MCL, but represents a common mechanism of MYC regulation. MYC itself is pivotal for MCL survival as its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy in targeting the MALT1-MYC axis in MCL patients.
B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma.
Specimen part, Cell line
View SamplesCircadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes due to inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms. Overall design: mRNA profiles of Cry1 knockdown, Cry2 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b.
Specimen part, Cell line, Subject
View Samples