DNA repair is an essential cellular process required to maintain genomic stability. Every cell is subjected to thousands of DNA lesions daily under normal changes in transcription. Transcription is a primary process where protein amount and function can be regulated. One aspect of the transcriptional IR response that little is known about on a whole genome basis is alternative transcription. These investigations focus on the response to IR at the exon level in human cells but also at the whole gene level. Whole genome exon arrays were utilized to comprehensively characterize radiation-induced transcriptional expression products in two human cell types, namely EBV-transformed lymphoblast and primary fibroblast cell lines.
DNA repair genes: alternative transcription and gene expression at the exon level in response to the DNA damaging agent, ionizing radiation.
Specimen part, Treatment, Subject
View SamplesPeripheral whole blood-based gene expression profiling has become one of the most common strategies exploited in the development of clinically relevant biomarkers. However, the ability to identify biologically meaningful conclusions from gene expression patterns in whole blood is highly problematic. First, it is difficult to know whether or not expression patterns in whole blood capture those in primary tissues. Second, if explicit steps are not taken to accommodate the extremely elevated expression levels of globin in blood then large-scale multi-probe microarray-based studies can be severely compromised. Many studies consider the use of mouse blood as a model for human blood in addition to considering blood gene expression levels as a general surrogate for gene expression levels in other tissues. We explored the effects of globin reduction on peripheral mouse blood in the detection of genes known to be expressed in human tissues. Globin reduction resulted in 1.) a significant increase in the number of probes detected (5840 944 vs 12411 1904); 2.) increased expression for 4128 probe sets compared to non-globin reduced blood (p < .001, two-fold); 3.) improved detection of genes associated with many biological pathways and diseases; and 4.) an increased ability to detect genes expressed in 27 human tissues (p < 10-4). This study suggests that although microarray-based mouse blood gene expression studies that do not consider the effects of globin are severely compromised, globin-reduced mouse whole blood gene expression studies can be used to capture the expression profiles of genes known to contribute to various human diseases.
The effects of globin on microarray-based gene expression analysis of mouse blood.
Sex, Age, Specimen part
View SamplesLangerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. In contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, we found that oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103+CD11blow (CD103+LCs) and CD11b+CD103- (CD11b+LCs) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103+LCs originate from pre-DCs, whereas CD11b+LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with their epithelial position, morphology and expression of LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DCs and monocytic) in steady state Overall design: The following cells were isolated from mice (2-4 replicates): Lung DCs, mucosal CD103+ LC, mucosal CD11b+ LC, Skin LC. Transcriptome analysis was performed.
Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes.
No sample metadata fields
View SamplesIL17-producing ?d T cells (?d T17) mainly develop in the prenatal phase and persist as long-living self-renewing effector cell in all kind of tissues. They express polyclonal T-cell receptors (TCR), comprising public V?4+ and V?6+ TCRs with germline-like rearrangements. In particular, V?6+ T cells have recently been found in a variety of tissues including enthesis, gingiva or skin. However, their exchange between tissues and the mechanisms of tissue-specific adaptation and residency remain poorly understood. Here, we profiled V?6+ T cells isolated from thymus, peripheral lymph nodes (pLN) and skin through single-cell RNA-seq technology and compared those to V?4+ T cells. Our data demonstrated that V?6+ T cells formed highly homogenous cell populations that could be separated by tissue-specific gene expression signatures. Overall design: Sort V?4 and V?6 ?dT cells from peripheral lymph nodes, ear skin and thymus, then do 3'-RNA single cell sequencing (10x genomics).
Single-Cell Transcriptomics Identifies the Adaptation of Scart1<sup>+</sup> Vγ6<sup>+</sup> T Cells to Skin Residency as Activated Effector Cells.
Age, Specimen part, Cell line, Subject
View SamplesThe first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES) cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Therefore, based on a microarray compendium of 205 samples, produced in our laboratory or from public databases, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC) to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5) and 18 different zinc finger transcription factors, including ZNF84. Strikingly, a large set of genes was found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declines. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome, resulting in loss of pluripotency and cell growth at doses without any detectable effects on differentiated cells. Taken together, these results suggest that the proteasome pathway may play a role in initiating and maintaining pluripotency during early development and in hESC.
A gene expression signature shared by human mature oocytes and embryonic stem cells.
No sample metadata fields
View SamplesPluripotent stem cells, which are capable to generate any cell type of the human body, such as human embryonic stem cells (hESC) or human induced pluripotent stem cells (hiPS) are a very promising source of cells for regenerative medicine. However, the genesis, the in vitro amplification and the differentiation of these cells still need improvement before clinical use. This study aimed to improve our knowledge on these critical steps in pluripotent stem cell generation. We derived new hESC lines, generated hiPS and compared these cell types with human foreskin fibroblasts and partially reprogrammed fibroblasts.
A gene expression signature shared by human mature oocytes and embryonic stem cells.
Specimen part, Cell line
View SamplesThe neuronal ceroid lipofuscinoses (NCL) are a group of childhood inherited neurodegenerative disorders characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of different forms of NCL suggest that common disease mechanisms may be involved. Here, we have performed quantitative gene expression profiling of cortex from targeted knock out mice produced for Cln1 and Cln5 to explore NCL-associated molecular pathways. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating cytoskeletal dynamics and neuronal growth cone stabilization display similar aberrations. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products, Cap1, Ptprf and Ptp4a2. The evidence from the gene expression data was substantiated by immunohistochemical staining data of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in beta-tubulin and actin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in CLN1 and CLN5. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCL.
Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases.
Sex, Age, Specimen part, Disease
View SamplesPleomorphic adenoma gene 1 (PLAG1) encodes a transcription factor involved in cancer and growth. We study the role of PLAG1 in preimplantation embryos using STRT RNA-seq of single embryos from wild type and knockout mothers (both mated with wild type studs). The lack of maternal Plag1 led to delayed mouse 2-cell stage embryo development, compensatory expression of Plag1 from the paternal allele, and dysregulation of 1,089 genes. Half of these genes displayed a pattern of delayed activation and play roles in ribosome biogenesis and protein synthesis. These mouse genes further showed a significant overlap with human EGA genes with similar ontology, and an enrichment of the PLAG1 de novo motif. We conclude that Plag1 affects EGA through retrotransposons influencing ribosomes and protein synthesis, a mechanism that might also explain its roles in cancer and growth Overall design: Single wild type and maternal Plag1 knockout embryos at MII, 2-cell and 8-cell stage development in 14-16 biologicla replicas per developmental stage and genotype.
Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development.
Subject
View SamplesAdult mouse gene expression patterns in common strains
Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.
No sample metadata fields
View SamplesProgressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an inherited neurodegenerative disease with myoclonus, seizures and ataxia, caused by the mutations in cystatin B (CSTB) gene. In an approach towards understanding the molecular basis of pathogenic events in EPM1 we have utilized the cystatin B deficient mice (Cstb-/-), a model for the disease. We have characterized the gene expression changes from the cerebellum of Cstb-/- mouse at postnatal day 7 (P7) and P30 as well as in cultured cerebellar granule cells using a pathway-based approach. A marked upregulation of immune response genes was seen at P30, reflecting the ongoing neuropathology, however, the observed alterations in complement cascade genes could also imply defects in synaptic plasticity. Differentially expressed genes in pre-symptomatic Cstb-/- animals at P7 were connected to synaptic function and plasticity and in cultured cerebellar granule cells to cellular biogenesis, cytoskeleton and intracellular transport. Especially GABAergic pathways were affected.
Gene expression alterations in the cerebellum and granule neurons of Cstb(-/-) mouse are associated with early synaptic changes and inflammation.
Sex, Specimen part
View Samples