High-throughput systems for gene expression profiling have been developed and matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised regarding data comparability and agreement across technologies. Within an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing). The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery. Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive, and currently, both provide indispensable tools for transcriptome profiling.
Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes.
Cell line
View SamplesExpression analysis of immortalized melanocytes Hermes 3c and Hermes 4c derivative cell lines following lentiviral transduction of a HA-tagged MITF-M construct (pLX3xHAvar4mCherry) or control construct (pLVX IRES mCherry).
Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes.
Cell line
View SamplesSystemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation.
CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.
Sex, Age, Specimen part, Cell line
View SamplesOsteosarcomas are the most common primary malignant tumours of bone, and almost all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. The cell lines showed complex patterns of DNA copy number changes, where copy number gains were significantly associated with gene-rich regions of the genome and losses with gene-poor areas. Integration of the datasets showed that the mRNA levels were regulated by either alterations in DNA copy number or DNA methylation. Using a recurrence threshold of 6/19 (> 30 %) cell lines, 348 genes were identified as having alterations of two data types (gain or hypo-methylation/over-expression, loss or hyper-methylation/under-expression). These genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2-deoxycytidine treatment for all four genes tested. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for some genes. Integrative analysis of genome-wide genetic and epigenetic alterations identified mechanistic dependencies and relationships between DNA copy number and DNA methylation in terms of regulating mRNA expression levels in osteosarcomas, contributing to better understanding of osteosarcoma biology.
Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.
Sex, Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Glioblastoma stem-like cells give rise to tumour endothelium.
Sex, Age, Specimen part
View SamplesTranscriptome analysis of RNAs from brain tumor
Glioblastoma stem-like cells give rise to tumour endothelium.
Sex, Age, Specimen part
View SamplesGBM is a heterogenous brain tumor with hyperproliferation of endothelial cells. In order to understand the cellular mechanism of vasculogenesis in GBM, four fractions of cells are seperated. Microarray assays was performed to examine the potential lineage relationship and the signal pathways involved in determining the cell identity and function.
Glioblastoma stem-like cells give rise to tumour endothelium.
Sex, Age, Specimen part
View SamplesThis study sought correlates of relapse tendency in TTP by examining gene expression profiles in peripheral blood leukocytes from patients with acquired ADAMTS13-deficient TTP in remission and matched healthy controls for global gene expression and autoantibodies.
Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura.
Specimen part, Disease, Disease stage
View Samples