refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE64102
Improved antitumor activity of immunotherapy combined with BRAF and MEK inhibitors in BRAFV600E mutant melanoma
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The first clinical trial testing the combination of targeted therapy with a BRAF inhibitor vemurafenib and immunotherapy with a CTLA-4 antibody ipilimumab was terminated early due to significant liver toxicities, possibly due to paradoxical activation of the MAPK pathway by BRAF inhibitors in tumors with wild type BRAF. MEK inhibitors can potentiate the MAPK inhibition in tumor, while potentially alleviating the unwanted paradoxical MAPK activation. With a mouse model of syngeneic BRAFV600E driven melanoma (SM1), we tested whether the addition of the MEK inhibitor trametinib would enhance the immunosensitization effects of the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression. Bioluminescent imaging and tumor infiltrating lymphocyte (TIL) phenotyping showed increased effector infiltration to tumors with dabrafenib, trametinib or dabrafenib plus trametinib with pmel-1 ACT combination. Intracellular IFN gamma staining of the TILs and in vivo cytotoxicity studies showed trametinib was not detrimental to the effector functions in vivo. Dabrafenib increased tumor associated macrophages and T regulatory cells (Tregs) in the tumors, which can be overcome by addition of trametinib. Microarray analysis revealed increased melanoma antigen, MHC expression, and global immune-related gene upregulation with the triple combination therapy. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen specific ACT, we tested the triple combination of dabrafenib, trametinib with anti-PD1 therapy, and observed superior anti-tumor effect to SM1 tumors. Our findings support the testing of these combinations in patients with BRAFV600E mutant metastatic melanoma.

Publication Title

Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma.

Sample Metadata Fields

Specimen part, Treatment, Compound

View Samples
accession-icon SRP070710
mRNA expressions in pre-treatment melanomas undergoing anti-PD-1 checkpoint inhibition therapy
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

PD-1 immune checkpoint blockade provides significant clinical benefits for cancer patients. However, factors influencing innate sensitivity remain incompletely catalogued. We analyzed the somatic mutanomes and transcriptomes of pretreatment melanoma biopsies. Mutations in cell adhesion genes and the DNA repair gene BRCA2 were enriched in responding tumors, and a high mutational load associated with improved survival. Innately resistant tumors displayed frequent transcriptomic up-expression of genes that enriched for mesenchymal transition, cell adhesion, ECM organization, wound-healing and angiogenesis. The transcriptomes of innate resistance also enriched for signatures indicating up-regulation of these processes. Notably, MAPK-targeted therapy (MAPKi) induced similar signatures in melanoma, suggesting that a form of MAPKi resistance mediates cross-resistance to anti-PD-1 therapy. Co-enrichment of IPRIM (Innate anti-PD-1 Resistance Induced by MAPKi) signatures defined a transcriptomic subset across advanced cancers, suggesting that attenuating processes underlying these signatures may augment anti-PD1 responses. Thus, multi-factorial determinants influence anti-PD-1 patterns in melanoma. Overall design: Melanoma biopsies pre-anti-PD-1 therapy were sent for transcriptomic analysis by paired-end RNAseq analysis to find the correlates of response vs. non-response to the therapy

Publication Title

Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25502
KLF13 regulate memory-like CD8 T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Memory-like T cells are a subset of thymic cells that acquire effector function through the maturation process rather than interaction with specific antigen. Disruption of genes encoding T cell signaling proteins or transcription factors have provided insights into the differentiation of such cells. We show here that in BALB/c but not C57BL/6 mice, a large portion of thymic CD4-CD8+ T cells exhibit a memory-like phenotype. In BALB/c mice, IL-4 secreted by invariant natural killer T (iNKT) cells is both essential and sufficient for the generation of memory-like T cells. In C57BL/6 mice, iNKT cells are less abundant, producing IL-4 that is insufficient to induce thymic memory-like CD8+ T cells. BALB/c mice deficient in the transcription factor Kruppel-like factor (KLF) 13 have comparable numbers of iNKT cells to C57BL/6 mice and extremely low levels of thymic memory-like CD8+ T cells. This work documents the dramatic impact of a small number of KLF13-dependent iNKT cells.

Publication Title

KLF13 sustains thymic memory-like CD8(+) T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP002958
microRNA expression in human tonsillar B cell populations
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

small RNA profiles of 6 human tonsillar B cell populatios (naive B cells, pre-germinal center B cells, centrocytes, centroblasts, memory B cells, and plasma cells) were determined by deep sequencing. These samples were compared to mouse developing lymphocytes, various hematopoietic cell lineages, and tissues. Overall design: small RNA expression profiles of 6 well defined B cell populations isolated from human tonsils.

Publication Title

Regulation of microRNA expression and abundance during lymphopoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact