Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.
Circadian clock genes contribute to the regulation of hair follicle cycling.
Sex
View SamplesHair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.
Circadian clock genes contribute to the regulation of hair follicle cycling.
Sex, Specimen part
View SamplesHair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.
Circadian clock genes contribute to the regulation of hair follicle cycling.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
Sex, Specimen part
View SamplesWhile several physiological skin parameters vary in a circadian manner, the identity of genes participating in chronobiology of skin remains unknown, leading us to define the circadian transcriptome of mouse skin at two different stages of the hair cycle, telogen and anagen. The circadian transcriptomes of telogen and anagen skin are largely distinct, with the former dominated by genes involved in cell proliferation and metabolism. The expression of many metabolic genes is antiphasic to cell cycle related genes, the former peaking during the day and the latter peaking at the night. Consistently, accumulation of reactive oxygen species, a byproduct of oxidative phosphorylation, and S-phase are antiphasic to each other in telogen skin. Furthermore, the circadian variation in S-phase is controlled by BMAL1 intrinsic to keratinocytes as keratinocyte-specific deletion of Bmal1 obliterates time of day dependent synchronicity of cell division in the epidermis leading to a constitutively elevated cell proliferation. Consistent with higher cellular susceptibility to UV-induced DNA damage during S phase, we found that mice are most sensitive to UVB-induced DNA damage in the epidermis at night. As maximum numbers of keratinocytes go through S phase in the late afternoon in the human epidermis, we speculate that in humans the circadian clock imposes regulation of epidermal cell proliferation such that skin is at a particularly vulnerable stage during times of maximum UV exposure, thus contributing to the high incidence of human skin cancers.
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
Sex, Specimen part
View SamplesWhile several physiological skin parameters vary in a circadian manner, the identity of genes participating in chronobiology of skin remains unknown, leading us to define the circadian transcriptome of mouse skin at two different stages of the hair cycle, telogen and anagen. The circadian transcriptomes of telogen and anagen skin are largely distinct, with the former dominated by genes involved in cell proliferation and metabolism. The expression of many metabolic genes is antiphasic to cell cycle related genes, the former peaking during the day and the latter peaking at the night. Consistently, accumulation of reactive oxygen species, a byproduct of oxidative phosphorylation, and S-phase are antiphasic to each other in telogen skin. Furthermore, the circadian variation in S-phase is controlled by BMAL1 intrinsic to keratinocytes as keratinocyte-specific deletion of Bmal1 obliterates time of day dependent synchronicity of cell division in the epidermis leading to a constitutively elevated cell proliferation. Consistent with higher cellular susceptibility to UV-induced DNA damage during S phase, we found that mice are most sensitive to UVB-induced DNA damage in the epidermis at night. As maximum numbers of keratinocytes go through S phase in the late afternoon in the human epidermis, we speculate that in humans the circadian clock imposes regulation of epidermal cell proliferation such that skin is at a particularly vulnerable stage during times of maximum UV exposure, thus contributing to the high incidence of human skin cancers.
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
Sex, Specimen part
View SamplesWhile several physiological skin parameters vary in a circadian manner, the identity of genes participating in chronobiology of skin remains unknown, leading us to define the circadian transcriptome of mouse skin at two different stages of the hair cycle, telogen and anagen. The circadian transcriptomes of telogen and anagen skin are largely distinct, with the former dominated by genes involved in cell proliferation and metabolism. The expression of many metabolic genes is antiphasic to cell cycle related genes, the former peaking during the day and the latter peaking at the night. Consistently, accumulation of reactive oxygen species, a byproduct of oxidative phosphorylation, and S-phase are antiphasic to each other in telogen skin. Furthermore, the circadian variation in S-phase is controlled by BMAL1 intrinsic to keratinocytes as keratinocyte-specific deletion of Bmal1 obliterates time of day dependent synchronicity of cell division in the epidermis leading to a constitutively elevated cell proliferation. Consistent with higher cellular susceptibility to UV-induced DNA damage during S phase, we found that mice are most sensitive to UVB-induced DNA damage in the epidermis at night. As maximum numbers of keratinocytes go through S phase in the late afternoon in the human epidermis, we speculate that in humans the circadian clock imposes regulation of epidermal cell proliferation such that skin is at a particularly vulnerable stage during times of maximum UV exposure, thus contributing to the high incidence of human skin cancers.
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
No sample metadata fields
View SamplesEffects of SOCS3 on the transcriptional response of bone marrow-derived macrophages to IL-6.
SOCS3 regulates the plasticity of gp130 signaling.
No sample metadata fields
View SamplesMutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%).
Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome.
Sex, Disease, Treatment, Race
View SamplesHearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
Specimen part
View Samples