This SuperSeries is composed of the SubSeries listed below.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesGender dimorphism exists in the physiological response to diet and other environmental factors. Trans-hydrogenated fatty acid (TFA) intake is associated with an increase in coronary heart disease (CHD), and gender differences in the incidence of CHD are well documented. Neonatal administration of Monosodium Glutamate (MSG) causes stunted heart growth and hypoplasticity; and gender dimorphism at the growth hormone axis has been demonstrated in MSG-treated rodents. The identification of gender dimorphism in cardiac nutrigenomics may provide the basis for gender-specific medicine in the future.
Sex-dimorphism in cardiac nutrigenomics: effect of trans fat and/or monosodium glutamate consumption.
Sex, Specimen part
View SamplesChronic dietary aspartame may impair rodent insulin tolerance and may affect behavior. Previous studies have shown the aspartame effects may be modulated by developmental NMDA receptor antagonism. Present study was designed to assess effects of aspartame and NMDAR antagonism on components of the HPA axis.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesChronic dietary aspartame may impair rodent insulin tolerance and may affect behavior. Previous studies have shown the aspartame effects may be modulated by developmental NMDA receptor antagonism. Present study was designed to assess effects of aspartame and NMDAR antagonism on components of the HPA axis.
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression.
Sex, Age, Specimen part
View SamplesIn this dataset we include the data obtained from 3 hour stimulation with Neisseria gonorrhoeae (GC) of bone marrow macrophages(BMDM) from wild type (C57BL/6) and Nod2 knock out mice (in C57BL/6 background).
Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.
Specimen part
View SamplesThe primary aim of this project was to identify novel factors, in particular the cell-surface protein CD109, which regulate osteoclastogenesis. Microarray analysis was performed comparing two pre-osteoclast cell lines generated from the RAW 264.7 osteoclast cell line: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by > 17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse.
CD109 plays a role in osteoclastogenesis.
Specimen part, Cell line
View SamplesHigh quality genetic material is an essential pre-requisite when analyzing gene expression using microarray technology. Peripheral blood mononuclear cells (PBMC) are frequently used for genomic analyses, but several factors can affect the integrity of nucleic acids prior to their extraction, including the methods of PBMC collection and isolation. In this study, we compared the Ficoll-Paque density gradient centrifugation and BD Vacutainer cell preparation tube (CPT) protocols to determine if either method offered a distinct advantage in preparation of PBMC-derived immune cell subsets for their use in gene expression analysis. We compared gene expression in PBMC and individual immune cell types from Ficoll and CPT isolation protocols using Affymetrix microarrays.
Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient.
Specimen part
View SamplesThe adult human lung has a very limited capacity to regenerate functional alveoli. In contrast, adult mice have a remarkable capacity for neoalveolarization following either lung resection or injury. The molecular basis for this unique capability to regenerate lung tissue in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling used in this species during lung regeneration. Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology. The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts, up-regulation of genes involved in T cell development and function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This appears to differ from embryonic alveologenesis. These data suggest that modulation of mesenchymal cell signaling and proliferation may act in concert with immunomodulation to control inflammation during post-pneumonectomy lung regeneration in adult mice.
Global gene expression patterns in the post-pneumonectomy lung of adult mice.
Sex, Treatment, Time
View SamplesTo determine effects of p53 activation on levels of RNA associated with polysomes, we performed RNA-seq analysis of colorectal carcinoma cell line HCT116, breast carcinoma line MCF7, and osteosarcoma line SJSA treated with MDM2 inhibitor Nutlin. Overall design: Polysomal RNA was extracted from HCT116, MCF7 and SJSA cells treated with Nutlin, polyA enriched and subjected to RNA-seq protocol.
Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity.
Cell line, Treatment, Subject
View SamplesCeliac disease (CeD) is an intestinal immune-mediated disorder caused by gluten ingestion in genetically predisposed subjects. CeD is characterized by villous atrophy, altered intestinal permeability, crypt hyperplasia and innate and adaptive immune response. This study aimed to develop and validate the use of intestinal organoids from celiac patients to study CeD. A repository of organoids from duodenum of non-celiac and celiac patients was generated and characterized accordingly to standard procedures. RNA-seq analysis was employed to study the global gene expression program of CeD (n=3) and non-CeD (n=3) organoids sets. While the three celiac derived organoids shared similar transcriptional signatures the NC samples set appeared more heterogeneous. We found 486 genes differentially expressed between the two groups. Of them, 299 genes were downregulated (FC<2; FDR<0.05) and 187 were upregulated in CeD (FC >2; FDR<0.05). We observed CeD organoids had significantly altered expression of genes associated with barrier function, innate immunity, and stem cell function. Overall design: mRNA profiles of 3 non-celiac healthy controls and 3 celiac organoids derived from duodenal biopsies.
Human gut derived-organoids provide model to study gluten response and effects of microbiota-derived molecules in celiac disease.
Specimen part, Disease, Subject
View Samples