Mesenchymal stem cells (MSCs) And osteolineage cells contribute to the hematopoietic stem cell (HSC) Niche in the bone marrow of long bones. However, Their developmental relationships remain unclear. Here we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin- MSCs participate in fetal skeletogenesis, And lose MSC activity soon after birth. In contrast, Quiescent neural-crest-derived nestin+ Cells in the same bones preserve MSC activity, But do not generate fetal chondrocytes. Instead, They differentiate into HSC-niche-forming MSCs, Helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ PDGFR- Cell population also contains Schwann-cell precursors, But does not comprise mature Schwann cells. Thus, In the developing bone marrow HSC-niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, And ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. Overall design: Total RNA was isolated from small numbers of FACS sorted stromal cells, obtained from neonatal Nes-Gfp bone marrow preparations (2 biological replicates). Each independent set of samples was obtained from pooled skeletal elements (long bones and sterna) form multiple littermates.
The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function.
No sample metadata fields
View SamplesEstrogens are potential regulators of the hematopoietic stem cell (HSC) niche and have effects on mature hematopoietic cells; however, whether estrogen signaling directly regulates normal and malignant HSC remains unclear. We demonstrate differential expression and specific roles of estrogen receptors (ER) in hematopoietic progenitors. ERa activation in short-term HSC and multipotent progenitors induced apoptosis. In contrast, the selective ER modulator (SERM) tamoxifen induced proliferation of quiescent long-term HSC, altered their self-renewal signature and compromised hematopoietic reconstitution following myelotoxic stress. Treatment with tamoxifen alone abolished hematopoietic progenitor expansion induced by JAK2V617F by restoring normal levels of apoptosis, blocked JAK2V617F-induced myeloproliferative neoplasm in vivo, and sensitized MLL-AF9+ leukemias to chemotherapy. Tamoxifen showed selective effects on mutant cells compared to normal ones, and had only a minor impact on steady-state hematopoiesis in disease-free animals. These results uncover specific regulation of hematopoietic progenitors by estrogens and potential anti-leukemic properties of SERM Overall design: LT-HSCs, ST-HSCs and MPPs sorted from the bone marrow of mice treated with tamoxifen or vehicle (3 biological replicates per group)
Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms.
Specimen part
View SamplesMyeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow (BM) microenvironment might contribute to the clinical outcomes of this common event. We previously showed that BM nestin+ mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin+ MSCs are consistently reduced in the BM of MPN patients and mice expressing the human JAK2V617F mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by BM neural damage and Schwann cell death triggered by interleukin-1b produced by mutant HSCs. In turn, in vivo depletion of nestin+ cells or their production of CXCL12 expanded mutant HSCs and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with b3-adrenergic agonists that restored the sympathetic regulation of nestin+ MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing leukaemic stem cells. Our results demonstrate that mutant HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms.
Specimen part
View SamplesMyeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow (BM) microenvironment might contribute to the clinical outcomes of this common event. We previously showed that BM nestin+ mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin+ MSCs are consistently reduced in the BM of MPN patients and mice expressing the human JAK2V617F mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by BM neural damage and Schwann cell death triggered by interleukin-1b produced by mutant HSCs. In turn, in vivo depletion of nestin+ cells or their production of CXCL12 expanded mutant HSCs and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with b3-adrenergic agonists that restored the sympathetic regulation of nestin+ MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing leukaemic stem cells. Our results demonstrate that mutant HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets. Overall design: CD45- CD31- Ter119- GFP+ cells were sorted from the BM of Nes-gfp;Mx1-cre;JAK2-V617F mice and control littermates 6 weeks after pIpC treatment and were subjected to RNA sequencing. Each sample was pooled from 3 animals of the same genotype.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms.
No sample metadata fields
View SamplesProgenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite their being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers. Overall design: MEPs mRNA profiles of adult mice Nanog-tg treated and untreated with doxycycline were generated by deep sequencing, in triplicate, using Illumina GAIIx.
The pluripotency factor NANOG controls primitive hematopoiesis and directly regulates <i>Tal1</i>.
Cell line, Subject
View Samplesin vitro microarray study of transcriptional changes of jejunal cells
Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis.
No sample metadata fields
View Samplesin vitro microarray study of transcriptional changes of jejunal cells
Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.
No sample metadata fields
View SamplesNutrient-driven O-GlcNAcylation of key components of the transcription machinery may epigenetically modulate gene expression in metazoans. Knockouts of the O-GlcNAc cycling enzymes in C. elegans are viable and fertile, allowing a global analysis of the impact of GlcNAcylation.
Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.
No sample metadata fields
View Samples