Validation of lung metastasis signature (LMS) and its association with risk of developing lung metastasis and with primary tumor size.
Lung metastasis genes couple breast tumor size and metastatic spread.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.
Cell line
View SamplesStromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.
Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.
No sample metadata fields
View SamplesStromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.
Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.
No sample metadata fields
View SamplesThe goal of this study is to investigate if interferon signaling regulates immune checkpoint blockade in mouse melanoma model. Overall design: Transcription profiling for B16, B16 after chronic interferon treatment, B16 derived checkpoint blockade resistant strain 499 and various knockout from 499, coupled with ATA-seq data.
Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade.
Specimen part, Treatment, Subject
View SamplesResponse to immune checkpoint inhibitors may be improved through combinations with each other and other therapies, raising questions about non-redundancy and resistance. We report results from parallel studies of melanoma patients and mice treated with anti-CTLA4 and radiation (RT). Although combined treatment improved responses, resistance was common. Computational analyses of immune and transcriptomic profiles (provided here) revealed that resistance in mice was due to upregulation of tumor PD-L1 that drives T cell exhaustion. Accordingly, optimal response requires RT, anti-CTLA4, and anti-PD-L1. Anti-CTLA4 inhibits Tregs, RT diversifies and shapes the TCR repertoire, and anti-PD-L1 reinvigorates exhausted T cells. Together, all three therapies promote the expansion of clonotypes with distinct TCR traits. Similar to mice, patients with melanoma showing high PD-L1 did not respond to RT + anti-CTLA4, demonstrated persistent T cell exhaustion, and rapidly progressed. Thus, the combination of RT, anti-CTLA4, and anti-PD-L1 promotes response through distinct mechanisms.
Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.
No sample metadata fields
View SamplesTo examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.
Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.
No sample metadata fields
View SamplesThe Shumiya cataract rat (SCR) is a model for hereditary cataract. Two-third of these rats develop lens opacity within 10-11-weeks. Onset of cataract is attributed to the synergetic effect of lanosterol synthase (Lss) and farnesyl-diphosphate farnesyltransferase 1 (Fdft1) mutant alleles that lead to cholesterol deficiency in the lenses, which in turn adversely affects lens biology including the growth and differentiation of lens epithelial cells (LECs). Nevertheless, the molecular events and changes in gene expression associated with the onset of lens opacity in SCR is poorly understood.
Identification of Differential Gene Expression Pattern in Lens Epithelial Cells Derived from Cataractous and Noncataractous Lenses of Shumiya Cataract Rat.
Specimen part, Disease
View SamplesTo assess RNA regulation in FALS for gene expression and alternative processing of RNA in the motor neuron precurssors (MPCs)
Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis.
Specimen part
View Samples