The importance of the role of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore co-expressed. The mir-11~998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of mir-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in highly penetrant pleiotropic developmental defects. We further show that this novel regulation of expression of miRNAs within a cluster is not limited to the mir-11~998 cluster and likely reflects the more general cis-regulation of expression of individual miRNAs. Thus, our results reveal a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift biological response. Overall design: RNA was extracted from Drosophila third instar larval eye discs of animals grown in standard conditions; Illumina HiSeq2000 Next Gen RNA Sequencing was performed, and differential expression of genes was assessed in wild-type vs unchecked miR-998 expression
Novel regulation and functional interaction of polycistronic miRNAs.
Specimen part, Subject
View SamplesExpression of dE2F1 induces proliferation and apoptosis. We sought to perform an unbiased analysis of the effect of co-expression of miR-11
mir-11 limits the proapoptotic function of its host gene, dE2f1.
Specimen part
View SamplesBackground: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal findings: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched MSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both MSCs and FBs. Further, MSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusion: Our findings suggest that stromal stem cells including adipose-derived MSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between MSCs and FBs. Overall design: A total of 91 samples were analyzed by multiplex RNA-seq. Samples represented replicates from two patients, two cell types and three differentiation protocols, as indicated by the sample annotation. 5 barcodes were unused, but the corresponding FASTQ files are included for completeness.
RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.
Specimen part, Treatment, Subject
View SamplesThird instar larval eye discs provide an in vivo model for cell cycle exit studies. Posterior to the Second Mitotic Wave proliferation is absent in a wild type eye disc. Inactivating mutations in tumor suppressor-like genes can lead to genome wide changes in gene expression that allow for inappropriate bypass of cell cycle exit signals posterior to the Second Mitotic Wave.
Cooperation between dE2F1 and Yki/Sd defines a distinct transcriptional program necessary to bypass cell cycle exit.
Specimen part
View SamplesWe used microarrays to identify genes that are differentially expressed in the absence of miR-998 expression.
An intronic microRNA links Rb/E2F and EGFR signaling.
Specimen part
View SamplesThe emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis (GSEA) identified a diestrus-specific induction of type-1 interferon signaling pathways. This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level, but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae.
Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases.
Specimen part, Treatment
View SamplesWe characterized the Drosophila third instar eye disc using single cell RNA-seq and labelled the multiple cell populations. The results identified a novel transcriptional switch in photoreceptors relating to axonal projections. We then performed single cell RNA-seq on rbf (Rb) mutants and compared the results to the WT cell populations. This identified a specific cell population only in the Rb mutant tissue. This cell population has an upregulation of HIF1A and glycolitic genes such as Aldolase and Lactate dehydrogenase. As a result these cells produce lactate and undergo apoptosis. We also show this process to be directly regulated by E2F/Dp. The paper uncovers a novel metabolic aspect of Rb/E2F dependent apoptosis. Overall design: examining WT and Rb mutants third instar eye disc using single cell RNA-seq
Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant.
Specimen part, Subject
View SamplesCells lacking Rb1 are deficient in differentiation. Loss of Kdm5a rescues myogenic differentiation, as judged by appearance of morphologically normal myotubes that display expression of late markers of differentiation. In order to better understand how Kdm5a loss rescues differentiation, we induced mouse embryonic fibroblasts (MEFs) of different genotypes to undergo myogenic differentiation and analyzed gene expression changes in wild-type, Kdm5a-/-, Rb1-/- and Kdm5a-/-; Rb1-/- cells. Rb1-/- cells stained single nucleated, did not exhibit morphological changes and increased expression of the myogenic marker MYHC. Except for Rb1-/- cells, all other cells were undergoing successful convertion into aligned multinucleated myotubes and were MYHC-positive. We obtained purified populations of myotubes for the wild-type and Kdm5a-/-; Rb1-/- cells. Overall design: RNA-seq analysis of gene expression in Rb1 or Kdm5a deficient MEFs that were induced for myogenic differentiation.
Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells.
No sample metadata fields
View SamplesBruton's tyrosine kinase (Btk) is important for B lymphocyte development. To identify genes that are differentially expressed in primary B cells lacking functional Btk, splenocytes from X-linked immunodeficiency (Xid), Btk knockout (KO) and immunocompetent CBA mice, were used in microarrays containing more than 12,000 genes and expressed sequence tags (ESTs). We found 4515 transcripts expressed in duplicate experiments in all three strains. Out of these, 38 were differentially expressed genes (21 up-regulated >2 fold and 17 down-regulated <-2 fold) between CBA and Btk defective mice. Ten out of these genes were selected and quantitative Real-Time PCR was conducted for validation and further investigation. Real-Time experiments correlated nicely with the microarray data.
Gene expression profile of B cells from Xid mice and Btk knockout mice.
No sample metadata fields
View SamplesApoptosis is an important process to eliminate cells from tissue which have incurred irreparable DNA damage. While dE2F1/dDP complexes respond to such damage by transcriptionally activating apoptotic genes, previous data suggests that activation of the previously characterized apoptotic target genes of dE2F1/dDP alone may not be the only gene regulation important for gamma irradiation-induced apoptosis. Here we report that following irradiation in dDP mutant 3rd instar larval eye imaginal discs, many genes important for oxidative phosphorylation are down-regulated, which are not down-regulated following irradiation in wild type eye discs.
Loss of dE2F compromises mitochondrial function.
Specimen part, Treatment
View Samples