refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE6043
Translation initiation factor 4E confers primary human cells with neoplastic properties
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Deregulation of translational control is an obligatory step in oncogenesis; however, this step has not been addressed by prior genomic and transcriptional profiling studies of cancer biology. Here we simulate the translational deregulation found in cancer by ectopically over expressing translation initiation factor eIF4E in primary human mammary epithelial cells; and examine its impact on cell biology and the pattern of ribosomal recruitment to mRNA genome wide. Over expression of eIF4E allows cells to bypass M0 premature growth arrest, but does not confer other malignant properties. However, in concert with hTERT, eIF4E imparts cells with growth and survival autonomy - and profoundly alters the pattern of polyribosome-associated mRNA encoding cell cycle and apoptosis regulators. The translational response to increased eIF4E is not only a unidirectional activation of oncogenic drivers, but also consists of complex intrinsic translational mechanisms that mitigate the acquisition of neoplastic properties.

Publication Title

Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44039
TET1 is a maintenance DNA demethylase that prevents methylation spreading in adult cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50016
TET1 is a maintenance DNA demethylase that prevents methylation spreading in adult cells [cDNA microarray]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina Genome Analyzer II

Description

We report that full length TET1 (TET1-FL) overexpression fails to induce global DNA demethylation in HEK293T cells. The preferential binding of TET1-FL to hypomethylated CpG islands (CGIs) through its CXXC domain leads to its inhibited 5-hydroxymethylcytosine (5hmC) production as methylation level increases. TET1-FL-induced 5hmC accumulates at CGI edges, while TET1 knockdown induces methylation spreading from methylated edges into hypomethylated CGIs. However, TET1 can regulate gene transcription independent of its dioxygenase catalytic function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically maintains the DNA hypomethylation state of CGIs in adult cells.

Publication Title

TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71062
Gene expression analysis of BE(2)C cells treated with SSRP1 and MYCN siRNAs
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Agilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE71059
Gene expression analysis of BE(2)C cells treated with SSRP1 siRNA
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconAgilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. Using a MYC target gene signature that predicts poor neuroblastoma prognosis we identified the histone chaperone, FAcilitates Chromatin Transcription (FACT), as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small molecule Curaxin compound, CBL0137, markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with chemotherapy in standard use by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN amplified neuroblastoma cells and a treatment strategy for MYCN-driven neuroblastoma

Publication Title

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE71060
Gene expression analysis of BE(2)C cells treated with MYCN siRNA (MYCN1 #SI03087518)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. Using a MYC target gene signature that predicts poor neuroblastoma prognosis we identified the histone chaperone, FAcilitates Chromatin Transcription (FACT), as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small molecule Curaxin compound, CBL0137, markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with chemotherapy in standard use by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN amplified neuroblastoma cells and a treatment strategy for MYCN-driven neuroblastoma

Publication Title

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE41184
1,25-dihydroxyvitamin D3-induced genes in mouse mixed neuron-glial cell cultures
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptomic response of mouse mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin D3

Publication Title

The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE48373
Comparative transcriptomic profiling of liver tissue from lean (fa/+) female Zucker rats (~15 weeks old) fed a standard diet supplemented (0.5% w/w) with a rosemary extract enriched in carnosic acid (40% CA)
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We used Affymetrix microarrays to investigate gene expression changes in the liver of lean female Zucker rats exposed to a normal diet supplemented with a rosemary extract rich in the diterpenic compound, carnosic acid (CA).

Publication Title

A rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon SRP064832
RNA-seq of MCF7 cells treated with epigenetic therapy
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

RNA-seq was performed after MCF7 cells were treated with S2101, UNC0638, GSK343, depsipeptide alone or in combination with decitabine Overall design: Biological triplicates were performed for a total of 30 samples. Fold change of each gene was calculated by comparing change in expression after inhibitor treatment to expression in the control samples

Publication Title

Transcriptional Selectivity of Epigenetic Therapy in Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070564
RNA-seq of HL60 cells treated with epigenetic therapy
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

RNA-seq was performed after HL60 cells were treated with S2101, UNC0638, GSK343, depsipeptide alone or in combination with decitabine Overall design: Biological triplicates were performed for a total of 30 samples. Fold change of each gene was calculated by comparing change in expression after inhibitor treatment to expression in the control samples

Publication Title

Transcriptional Selectivity of Epigenetic Therapy in Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact