refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon SRP044274
Dual regulation of Fbw7 function and oncogenic transformation by Usp28
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-mediated substrate degradation is antagonized by the Usp28 deubiquitinase. We now show, using knockout mice, that Usp28 preferentially deubiquitinates and stabilizes Fbw7. Monoallelic deletion of Usp28 maintains stable Fbw7 but destabilizes Fbw7 substrates. In contrast, complete knockout of Usp28 promotes Pin1-dependent autocatalytic turnover of Fbw7, accumulation of Fbw7 substrates and oncogenic transformation. Overexpression of Usp28 stabilizes both Fbw7 and its substrates and similarly enhances transformation. We propose that dual regulation of Fbw7 activity by Usp28 maintains physiological levels of Fbw7 substrates, and that both loss and overexpression of Usp28 in human cancer promote Fbw7 substrate accumulation. Overall design: RNAseq experiments of E13.5 murine embryonic fibroblasts (MEFs) derived from animals in which Usp28 was either deleted (-/-), wildtype (+/+) or heterozygous (+/-). In a first set of experiments immortalized MEFs of all three genotypes were analysed in biological triplicates. In a second set of experiments immortalized and Ras transformed MEFs of all three genotypes and MEFs which overexpress USP28 (+/+/+) where sequenced in duplicates.

Publication Title

Dual regulation of Fbw7 function and oncogenic transformation by Usp28.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP153334
The homeobox transcription factor HB9 induces senescence and blocks differentiation in hematopoietic stem and progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The translocation t(7;12)(q36;p13) occurs in infants and very young children with AML and usually has a fatal prognosis. Whereas the transcription factor ETV6, located at chromosome 12p13, has largely been studied in different leukemia types, the influence of the translocation partner HB9 (chr. 7q36), is still unknown. This is particularly surprising as ectopic expression of HB9 is the only recurrent molecular hallmark of translocation t(7;12) AML. We investigated the influence of HB9 as a potential oncogene on cell proliferation and cell cycle in vitro, as well as on hematopoietic stem cell differentiation in vivo using murine and human model systems. We show, that HB9 induces premature senescence in human HT1080 and murine NIH3T3 cells, providing for the first time evidence for an oncogenic potential of HB9. Furthermore, HB9-transduced primary murine hematopoietic stem and progenitor cells underwent a profound differentiation arrest and accumulated at the megakaryocyte/erythrocyte progenitor stage, resulting in a premalignant myeloid cell population in vivo. Concomitantly, HB9 expression upregulates erythropoiesis-related genes in primary human hematopoietic stem and progenitor cells, and enriches gene expression profiles for cell cycle and mitosis-related biological processes. In summary, the novel findings of HB9 dependent premature senescence and perturbed hematopoietic differentiation shed light on the oncogenic properties of HB9 in translocation t(7;12) AML and offer novel targets for therapeutic intervention. Overall design: CD34+ cells were transduced with either GFP or HB9

Publication Title

The homeobox transcription factor HB9 induces senescence and blocks differentiation in hematopoietic stem and progenitor cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE26971
Affymetrix data for training of Endopredict algorithm
  • organism-icon Homo sapiens
  • sample-icon 225 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

These data, combined with other cohorts (GSE6532, GSE12093, and qRT-PCR based cohorts), was used to construct the EP algorithm, which predicts the likelihood of developing of a distant recurrence of early stage breast cancer under endocrine treatment. In addition, EPclin, a combination of the EP score, the nodal status and the tumor size, was constructed.

Publication Title

A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47194
Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47181
Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. [microarray]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We report the in vivo androgen receptor (AR) binding sites in murine prostate, epididymis and kidney in response to physiological androgen testosterone using ChIP-sequencing and gene expression profiling by microarray. From AR cistrome analysis, we identified tissue-specific collaborating factors i.e. FoxA1 in prostate, Hnf4a in kidney and AP2a in epididymis and validated by ChIP-seq. The ChIP experiments have been performed using antibodies specific to AR, FoxA1, Hnf4a, AP-2a and IgG non-specific antibody as a negative control.

Publication Title

Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31341
The Phytoestrogen Genistein Is a Tissue-Specific Androgen Receptor Modulator
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We report that the phytoestrogen genistein acts as a tissue-specific androgen receptor modulator in mouse using a novel androgen reporter mouse line and gene expression profiling. Genistein is a partial androgen agonist/antagonist in prostate, brain, and testis but not in skeletal muscle or lung. Gene expression profiling has been done from prostates of intact and castrated male mice treated with genistein or vehicle. Gene expression profiling was also done from prostates of estradiol-treated intact male mice.

Publication Title

The phytoestrogen genistein is a tissue-specific androgen receptor modulator.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE2430
Azithromycin-treated PAO1 vs untreated PAO1
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Experimental Design

Publication Title

Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39880
FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE39654
FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

We report the androgen receptor recruitment to the chromatin of androgen responsive prostate cancer cell lines, LNCaP-1F5 and VCaP in response to physiological androgen 5a-dihydrotestosterone (DHT) using ChIP-sequencing. We compare the AR recruitment by DHT to that by partial agonist/antagonist cyproterone acetate and mifepristone (RU486) in LNCaP-1F5 cells. We also report the role of glucocorticoid receptor recruitment in presence of dexamethasone (Dex) in androgen responsive prostate cancer cells. The AR and GR cistrome analysis is subsequently compared with gene expression data and RNA Pol II analysis. The ChIP-seq has been performed using AR, GR, RNA Pol II antibodies.

Publication Title

FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE30316
Genome-wide analysis of the effect of PIAS1 knockdown by siRNA on the androgen regulated gene programs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of PIAS1 co-regulation in the androgen signaling pathways in prostate cancer cell line.

Publication Title

SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin.

Sample Metadata Fields

Cell line, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact