CD34+ hematopoietic stem/progenitor cells were isolated from human cord blood and amplified in vitro for 10-14 days in serum-free medium with specific cytokines (Ju et al., Eur. J. Cell Biol. 82, 75-86, 2003; Hacker et al., Nat. Immunol. 4, 380-386, 2003). Cultured progenitor cells were induced to differentiate into DC in RPMI medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, 0.1 microM Beta-mercaptoethanol, 100 U/ml penicillin and streptomycin (GIBCO-BRL) and 500 U/ml GM-CSF, 500 U/ml IL-4 for 6 days with or without 10 ng/ml TGF-beta1 as indicated (0.5x10E6 cells/ml). Every 2 days growth factors were added and cells were maintained at 0.5x10E6 cells/ml cell density. RNA was prepared and subjected to microarray analysis.
Transforming growth factor beta1 up-regulates interferon regulatory factor 8 during dendritic cell development.
No sample metadata fields
View SamplesEffect of fumarase point mutation or knock-out on transcriptional profile in yeast to model hereditary leiomyomatosis and renal cell cancer (HLRCC).
Modeling tumor predisposing FH mutations in yeast: effects on fumarase activity, growth phenotype and gene expression profile.
Sex, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs.
Specimen part, Treatment
View SamplesWe report the in vivo androgen receptor (AR) binding sites in murine prostate, epididymis and kidney in response to physiological androgen testosterone using ChIP-sequencing and gene expression profiling by microarray. From AR cistrome analysis, we identified tissue-specific collaborating factors i.e. FoxA1 in prostate, Hnf4a in kidney and AP2a in epididymis and validated by ChIP-seq. The ChIP experiments have been performed using antibodies specific to AR, FoxA1, Hnf4a, AP-2a and IgG non-specific antibody as a negative control.
Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs.
Specimen part
View SamplesWe report that the phytoestrogen genistein acts as a tissue-specific androgen receptor modulator in mouse using a novel androgen reporter mouse line and gene expression profiling. Genistein is a partial androgen agonist/antagonist in prostate, brain, and testis but not in skeletal muscle or lung. Gene expression profiling has been done from prostates of intact and castrated male mice treated with genistein or vehicle. Gene expression profiling was also done from prostates of estradiol-treated intact male mice.
The phytoestrogen genistein is a tissue-specific androgen receptor modulator.
Sex, Specimen part
View SamplesExperimental Design
Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.
Specimen part, Cell line, Treatment
View SamplesWe report the androgen receptor recruitment to the chromatin of androgen responsive prostate cancer cell lines, LNCaP-1F5 and VCaP in response to physiological androgen 5a-dihydrotestosterone (DHT) using ChIP-sequencing. We compare the AR recruitment by DHT to that by partial agonist/antagonist cyproterone acetate and mifepristone (RU486) in LNCaP-1F5 cells. We also report the role of glucocorticoid receptor recruitment in presence of dexamethasone (Dex) in androgen responsive prostate cancer cells. The AR and GR cistrome analysis is subsequently compared with gene expression data and RNA Pol II analysis. The ChIP-seq has been performed using AR, GR, RNA Pol II antibodies.
FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.
Cell line, Treatment
View SamplesAnalysis of PIAS1 co-regulation in the androgen signaling pathways in prostate cancer cell line.
SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin.
Cell line, Time
View SamplesAndrogen receptor (AR) is a ligand-dependent transcription factor that plays a key role in the onset and progression of prostate cancer. Surprisingly little is known of AR binding sites and collaborating transcription factors in the human genome. Here we have identified the DNA sequence motifs that are significantly enriched within the authentic 90 AR target regions found on chromosomes 21 and 22 in human prostate cancer cells by combining chromatin immunoprecipitation for AR with chromosome-scale tiled oligonucleotide microarrays. By integrating the DNA sequence motif data with the gene expression profiles from human prostate cancers we identified the transcription factors that recognize each of these motifs. These factors form complexes with AR, bind to specific AR target regions and govern androgen-dependent transcription. Together with AR these collaborating transcription factors form a regulatory network that directs prostate cancer growth and survival and identify potential new opportunities for therapeutic intervention.
A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth.
No sample metadata fields
View Samples