refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 56 results
Sort by

Filters

Technology

Platform

accession-icon GSE56973
Functional and evolutionary significance of human microRNA seed region mutations
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61230
Functional and evolutionary significance of human microRNA seed region mutations [M14]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61229
Functional and evolutionary significance of human microRNA seed region mutations [M5]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56972
Functional and evolutionary significance of human microRNA seed region mutations [M12]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56967
Functional and evolutionary significance of human microRNA seed region mutations [miR-429]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the regulation of gene expression at the post transcriptional and/or translational level thus impacting various biological processes. Dysregulation of miRNAs could affect processes associated with progression of a variety of diseases including cancer. Majority of miRNA targeting in animals involves a 7-nt seed region mapping to positions 2-8 at the molecules 5' end. The importance of this 7 nt sequence to miRNA function is evidenced by the fact that the seed region sequence of many miRNAs is highly conserved within and between species. In this study, we computationally and experimentally explore the functional significance of sequence variation within the seed region of human miRNAs. Our results indicate that change of a single nt within the 7-nt seed region changes the spectrum of targeted mRNAs significantly meanwhile further nt changes have little to no additional effect. This high functional cost of even a single nucleotide change within the seed region of miRNAs explains why the seed sequence is highly conserved among many miRNA families both within and between species and could help clarify the likely mechanisms underlying the evolution of miRNA regulatory control.

Publication Title

Functional and evolutionary significance of human microRNA seed region mutations.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP016583
Transcriptional Profiling of Psoriasis Using RNA-seq Reveals Previously Unidentified Differentially Expressed genes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The transcriptomic profiling of psoriasis has led to an increased understanding of disease pathogenesis. Although microarray technologies have been instrumental in this regard, it is clear that these tools detect an incomplete set of DEGs. RNA-seq can be used to supplement these prior technologies. Here, the use of RNAseq methods substantially increased the number of psoriasis-related DEGs. Furthermore, DEGs that were uniquely identified by RNA-seq, but not in other published microarray studies, further supported the role of IL-17 and tumor necrosis factor-a synergy in psoriasis. Examination of one of these factors at the protein level confirmed that RNA-seq is a powerful tool that can be used to identify molecular factors present in psoriasis lesions, and may be useful in the identification of therapeutic targets that to our knowledge have not been reported previously. Further studies are in progress to determine the biological significance of DEGs uniquely discovered by RNA-seq. Overall design: To define the transcriptomic profile of psoriatic skin, three pairs of lesional and nonlesional skin biopsy specimens were taken from patients with untreated moderate-to-severe plaque psoriasis.

Publication Title

Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52471
Dominant Th1 and Minimal Th17 Skewing in Discoid Lupus Revealed by Transcriptomic Comparison with Psoriasis
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Discoid lupus erythematosus (DLE) is the most common skin manifestation of lupus. Despite its high frequency in systemic lupus in addition to cases without extracutaneous manifestations, targeted treatments for DLE are lacking, likely because of a dearth of knowledge of the molecular landscape of DLE skin. Here, we profiled the transcriptome of DLE skin in order to identify signaling pathways and cellular signatures that may be targeted for treatment purposes. Further comparison of the DLE transcriptome with that of psoriasis, a useful reference given our extensive knowledge of molecular pathways in this disease, provided a framework to identify potential therapeutic targets. Although a growing body of data support a role for IL-17 and T helper type 17 (Th17) cells in systemic lupus, we show a relative enrichment of IFN--associated genes without that for IL-17-associated genes in DLE. Extraction of T cells from the skin of DLE patients identified a predominance of IFN--producing Th1 cells and an absence of IL-17-producing Th17 cells, complementing the results from whole-skin transcriptomic analyses. These data therefore support investigations into treatments for DLE that target Th1 cells or the IFN- signaling pathway.

Publication Title

Dominant Th1 and minimal Th17 skewing in discoid lupus revealed by transcriptomic comparison with psoriasis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE68801
Human Alopecia Areata Skin Biopsy Samples
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling of scalp skin biopsies from patients with alopecia areata or normal healthy controls

Publication Title

Molecular signatures define alopecia areata subtypes and transcriptional biomarkers.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE80342
Pilot open label clinical trial of oral ruxolitinib in patients with alopecia areata
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This goal of these studies were to examine gene expression profiles of skin from patients with alopecia areata undergoing treatment with oral ruxoltinib.

Publication Title

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata.

Sample Metadata Fields

Sex, Race, Subject

View Samples
accession-icon GSE61555
Treatment of C3H/HeJ grafted mice with baricitinib
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact