refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 120 results
Sort by

Filters

Technology

Platform

accession-icon SRP047410
Transcription profile of BY4741 (Wild type) during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. Wild type cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047411
Transcription profile of ?phm3 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm3 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047416
Transcription profile of pho90_OX strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho90_OX cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047418
Transcription profile of phm3 damp strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. phm3 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047415
Transcription profile of ?vip1 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?vip1 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047413
Transcription profile of pho85 damp strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho85 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047417
Transcription profile of ?phm4 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm4 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 3.75 hours Overall design: 16 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP049253
Spinal cord injury (RNA sequencing data)
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

We investigated the gene expression profile of monocyte-derived macrophages and microglia following spinal cord injury. Moreover, we investigated the gene expression profole of M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment. Overall design: monocyte-derived macrophages and microglia following spinal cord injury M-CSF induced macrophages and new-born derived microglia following TGFb1 treatment

Publication Title

Chronic exposure to TGFβ1 regulates myeloid cell inflammatory response in an IRF7-dependent manner.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093880
Dissecting immune circuits by linking CRISPR pooled screens with single cell RNA-seq [SET1]
  • organism-icon Mus musculus
  • sample-icon 118 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In multicellular organisms, dedicated regulatory circuits control cell-type diversity and response. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. We present CRISP-seq, an integrated method for massively parallel single-cell RNA-seq and CRISPR pooled screens. We show that profiling the perturbation and transcriptome in the same cell, enables to elucidate, the function of multiple factors and their interactions. In this benchmarking study, we applied this technology to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors controlling the commitment toward different cell lineages or the inflammatory and antiviral pathways. CRISP-seq thereby emerges as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits. Overall design: Transcriptional and CRISPR profiles from single myeloid cells, infected with lentiviral vectors carrying different gRNAs, were generated by deep sequencing of tens of thousands of single cells, sequenced in several batches in an Illumina Nextseq 500. Experiment was paired-end, but read2 was used to read cell and molecule barcodes only. Additional details about experimental design (associating each single cell with its amplification batch and index sorting readout) available as Series supplementary file.

Publication Title

Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP045264
Chromatin state dynamics during blood formation (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

We develop a new ChIpseq method (iChIP) to profile chromatin states of low cell number samples. We use IChIP to profile the chromatin dynamics during hematopoiesis across 16 different cell types which include the principal hematopoietic progenitors Overall design: 3'' RNA-seq for digital gene expression quantitation across multiple cell types.

Publication Title

Immunogenetics. Chromatin state dynamics during blood formation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact