refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP069024
Deep transcriptome analysis of mouse embryonic fibroblast following simultaneous overexpression of Stella, Oct4 and Nanos2 (SON)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

We constructed a polycistronic lentiviral vector to overexpress 3 germ cell specific genes (Stella, Oct4 and Nanos2) in mouse embryonic fibroblast (MEFs) and evaluated the transcriptome portrait in partially reprogrammed cells.We sequenced RNA samples from bulk cell population of two biological duplicates of MEF-GFP (control) and MEF-SON (overexpressed) 21 days post infection. Differential expression analysis of 50 M pair-end read per samples showed overexpression of neurogenesis, blood vessel and proliferation related genes and downregulation of chondroitin sulphate metabolic process, nitric oxide production and innate immune response genes. Overall design: Examination of whole transcriptome following concurrent overexpression of Stella, Oct4 and Nanos2 in MEFs.

Publication Title

Suppression of dsRNA response genes and innate immunity following Oct4, Stella, and Nanos2 overexpression in mouse embryonic fibroblasts.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE38063
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina Rat Ref-12 v1

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38012
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle [Human]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

With the population of older and overweight individuals on the rise in the Western world, there is an ever greater need to slow the aging processes and reduce the burden of age-associated chronic disease that would significantly improve the quality of human life and reduce economic costs. Caloric restriction (CR), is the most robust and reproducible intervention known to delay aging and to improve healthspan and lifespan across species (1); however, whether this intervention can extend lifespan in humans is still unknown. Here we report that rats and humans exhibit similar responses to long-term CR at both the physiological and molecular levels. CR induced broad phenotypic similarities in both species such as reduced body weight, reduced fat mass and increased the ratio of muscle to fat. Likewise, CR evoked similar species-independent responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with improved health and survival: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. To our knowledge, these are the first results to demonstrate that long-term CR induces a similar transcriptional profile in two very divergent species, suggesting that such similarities may also translate to lifespan-extending effects in humans as is known to occur in rodents. These findings provide insight into the shared molecular mechanisms elicited by CR and highlight promising pathways for therapeutic targets to combat age-related diseases and promote longevity in humans.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact