To identify the genes and pathways regulated by FOXF2, we investigated potential FOXF2 gene targets by microarray analyses of primary prostate stromal cells (PrSC) in which FOXF2 was knocked down by siRNA. 190 differentially expressed genes were selected, of which 104 genes were more highly expressed in PrSC cells treated with FOXF2 siRNA and 86 were more highly expressed in PRSC cells treated with negative control siRNA.
The FOXF2 pathway in the human prostate stroma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
Cell line
View SamplesERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
No sample metadata fields
View SamplesLong non-coding RNAs show highly tissue and disease specific expression profiles. We analyzed prostate cancer and normal adjacent prostate samples to identify cancer-specific transcripts and found 334 candidates, of which 15 were validated by RT-PCR.
Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer.
No sample metadata fields
View SamplesERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
Cell line
View SamplesDU145 prostate cancer cells were treated with 25 ng/ml hepatocyte growth factor (HGF) or vehicle for 2, 8, or 24 hours. HGF stimulates the cMET protein, a tyrosine kinase transmembrane protein.
Activation of c-MET induces a stem-like phenotype in human prostate cancer.
Cell line, Time
View SamplesCaesarean-delivered preterm pigs were fed 3 d of parenteral nutrition followed by 2 d of enteral formula feeding. Antibiotics (n=11) or control saline (n=13) were given twice daily from birth to tissue collection at d 5. NEC-lesions and intestinal structure, function, microbiology and immunity markers were recorded.
Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets.
Specimen part, Treatment
View SamplesBACKGROUND
Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.
No sample metadata fields
View SamplesProjection-dependent ribosome profling from mouse mPFC.
Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking.
Specimen part
View SamplesUsing anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, RIP-Chip experiments enable direct analyses of miRNA targets. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3 portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3-untranslated region targeting, and stable AGO association versus mRNA knockdown. For detailed protocol and for full discussion of the results please see Nelson PT et al, Nucleic Acids Res. 2011 Oct;39(18):8163-72.
Specific sequence determinants of miR-15/107 microRNA gene group targets.
Specimen part, Disease, Cell line
View Samples