refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 69 results
Sort by

Filters

Technology

Platform

accession-icon GSE17140
Gene expression profile of myeloma cells treated with IGF-1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Objective of this study was to find changes in gene expression of mouse multiple myeloma cells upon treatment with IGF-1

Publication Title

IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE87716
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87714
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions [mRNA expression]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite current progress in improving patient outcome, MM remains largely incurable. Disease clonal and interpatient heterogeneity has hampered identification of a common underlying mechanism for disease establishment and have slowed the development of novel targeted therapies. Epigenetic aberrations are now emerging as increasingly important in tumorigenesis, thus selective targeting of crucial epigenetic enzymes may provide new therapeutic potential in cancer including MM. Recently, we and others suggested the histone methyltransferase enhancer of zeste homolog 2 (EZH2), to be a potential therapeutic target in MM. Now we show that pharmacological inhibition of EZH2 suppresses the MM cell growth through downregulation of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1and c-MYC. We also show that downregulation of these genes is mediated via reactivated expression of microRNAs with tumor suppressor functions; primarily miR125a-3p and miR320c. Using chromatin immunoprecipitation (ChIP) we demonstrate that miR125a-3p and miR320c are targets of EZH2 and H3K27me3 in MM cell lines and primary MM cells. Our results further highlight the importance of polycomb-mediated silencing in MM to include microRNAs with tumor suppressor activity. This novel role further strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.

Publication Title

EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE69253
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconAB 5500 Genetic Analyzer (Homo sapiens), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE69251
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

in this study we define an epigenomic profile of PRC2 (H3K27me3 and bivalent) tragets in four newly diagnosed MM patients. Using Oncomine database we demonstarte that PRC2 targets are underexpressed with advanced ISS stages and correlated to poor outcome. Pharmacological inhibition of UNC1999 showed anti-myeloma potential in vitro by activating the expression genes related to apoptosis and cell differenatiation.

Publication Title

Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE54058
Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Alu SINEs are the most numerous frequently occurring transcription units in our genome and possess sequence competence for transcription by RNA Pol III. However, through poorly understood mechanisms, the Alu RNA levels are maintained at very low levels in normal somatic cells with obvious benefits of low rates of Alu retrotransposition and energy-economical deployment of RNA Pol III to the tRNA genes which share promoter structure and polymerase requirements with Alu SINEs. Using comparative ChIP sequencing, we unveil that a repeat binding protein, CGGBP1, binds to the transcriptional regulatory regions of Alu SINEs thereby impeding Alu transcription by inhibiting RNA Pol III recruitment. We show that this Alu-silencing depends on growth factor stimulation of cells and subsequent tyrosine phosphorylation of CGGBP1. Importantly, CGGBP1 ensures a sequence-specific discriminative inhibition of RNA Pol III activity at Alu promoters, while sparing the structurally similar tRNA promoters. Our data suggest that CGGBP1 contributes to growth-related transcription by preventing the hijacking of RNA Pol III by Alu SINEs.

Publication Title

Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1518
Human endothelium exposed to shear stress and pressure
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Intact living conduit vessels (umbilical veins) were exposed to normal or high intraluminal pressure, or low or high shear stress in combination with a physiological level of the other force. We used a unique vascular ex vivo perfusion system. After six hours of perfusion endothelial cells were isolated from the stimulated vessels and RNA was extracted. RNA from 16 experiments from each stimulation were pooled and analyzed in duplicate DNA microarrays.

Publication Title

Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43179
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43177
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP) [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43592
MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS).

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact