refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE27648
Expression profile of Maize (Zea mays L.) Embryonic Axes During Germination: Regulation of Ribosomal Protein mRNAs.
  • organism-icon Zea mays
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Seed germination is a critical developmental process in plant propagation. Knowledge of the gene expression patterns in this critical process is important in order to understand the main biochemical reactions involved in successful germination, specially for economically relevant plants such as Maize.

Publication Title

Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon SRP101670
Ablation of the stress protease OMA1 protects against heart failure
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Heart failure (HF) is a major health and economic burden in developed countries. It has been proposed that the pathogenesis of HF may involve the action of mitochondria. Here we evaluate three different models of HF: tachycardiomyopathy, HF with preserved left ventricular (LV) ejection fraction, and LV myocardial ischemia and hypertrophy. Regardless of whether LVEF is preserved or reduced, our results indicate that the three models share common molecular features: an increase in mitochondrial ROS, followed by ultrastructural alterations in the mitochondrial cristae and loss of mitochondrial integrity that lead to cardiomyocyte death. We show that the ablation of the mitochondrial protease OMA1 averts cardiomyocyte death in all three experimental HF models, and thus, plays a direct role in cardiomyocyte protection. This finding identifies OMA1 as a potential target for preventing the progression of myocardial damage in HF associated to a variety of etiologies. Overall design: Transcriptome analysis of 12-week-old wild type mice versus OMA1 KO mice under control (non-treated) or treated with Isoproterenol chronically (implanted minipumps) for 7 days in heart tissue. The nuclear genetic background for both genotypes is C57BL/6JOlaHsd.

Publication Title

Ablation of the stress protease OMA1 protects against heart failure in mice.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject

View Samples
accession-icon SRP093261
Embryonic VHL-HIF signaling defines dynamic heart metabolic compartments essential for cardiac maturation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1a regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1a and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1a hyperactivation, disrupting metabolic compartmentalization and blocking the midgestational shift toward oxidative phosphorylation. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for cardiac conduction system establishment. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. Overall design: RNA was isolated from individual E12.5 embryonic hearts after removal of the atria and valvular region. KOs and control littermates were matched by somite count, and a total number of 3 KOs and 3 controls from 3 independent litters were used. For RNA extraction, QIAzol Lysis Reagent (Qiagen; CA; USA) and the miRNeasy Mini Kit (Qiagen; CA; USA) were used. RNA was quantified and its purity checked with a NanoDrop ND-1000 spectophotometer (Thermo Scientific; MA; USA). RNA integrity was verified with an Agilent 2100 Bioanalyzer (Agilent Technologies; CA; USA). Index-tagged cDNA libraries were constructed from 500 ng of total RNA using the TruSeq RNA Sample Preparation v2 Kit (Illumina; CA; USA). Libraries were quantified by Quant-iTâ„¢ dsDNA HS assay in a Q-bit fluorometer (Life Technologies; CA; USA). Average library size and size distribution were determined by DNA 1000 assay in an Agilent 2100 Bioanalyzer. Libraries were normalized to 10nM using 10mM Tris-HCl, pH8.5 containing 0.1% Tween 20 and then applied to an Illumina flow cell for cluster generation (True Seq SR Cluster Kit V2 cBot) and sequencing-by-synthesis. Single reads of length 75bp were generated with the TruSeq SBS Kit v5 (Illumina; CA; USA) on the Genome Analyzer IIx platform, following the standard RNA sequencing protocol. Reads were further processed using the CASAVA package (Illumina; CA; USA) to split reads according to adapter indexes and produce fastq files.

Publication Title

Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE41706
Expression data from adult (9 month-old) hearts from GRK2 heterozygous C57BL/6J mice and its wild type littermates
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

G protein-coupled receptor kinase 2 (GRK2) has emerged as a key regulator of cardiac function and myocardial structure. Cardiac GRK2 is increased in heart failure and ischemia in humans, whereas genetic inhibition of GRK2 is cardioprotective in animal models of these pathologies. However, the mechanistic basis underlying these effects are not fully understood. We have used adult GRK2 hemizygous mice (GRK2+/-) as a model to assess the effects of a sustained systemic inhibition of GRK2 in heart tissue with age.

Publication Title

Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP057171
Sequential Notch activation regulates ventricular chamber development
  • organism-icon Mus musculus
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaGenomeAnalyzerIIx

Description

Ventricular chambers are essential for the rhythmic contraction and relaxation that occurs in every hearbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is still poorly understood. Here we show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation and later coordinates ventricular patterning and compaction with coronary vessel development to give rise to the mature chamber via a temporal sequence of ligand signalling determined by the glycosyltransferase Manic Fringe (Mfng). The early endocardial expression of Mfng favours Dll4-Notch1 signalling, Which induces trabeculation in the developing ventricle.Ventricular maturation and compaction in turn require Mfng and Dll4 downregulation in the endocardium, Which allows myocardial Jag1- And Jag2- Signalling to Notch1 in this tissue.Timely and spatial perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. Overall design: Dll4 and Notch1 conditional KOs using Nfact1 and/or Tie2 driven Cre expression: RNA was isolated from pooled whole hearts of 8 (Nfact1) or 9 (Tie2) E9.5 embryos per replicate. Dll4flox;Nfatc1-Cre and WT siblings (4 KO and 4 WT replicates), Notch1flox;Nfatc1-Cre and WT siblings (3 KO and 2 WT replicates), Dll4flox;Tie2-Cre and WT siblings (3 KO and 3 WT replicates). Jag1, Jag2 and Jag1Jag2 conditional KOs using cTnT driven Cre expression: RNA was isolated from pooled heart ventricles of 4 E15.5 embryos per replicate. Jag1flox;cTnT-Cre and WT siblings (3 KO and 3 WT replicates), Jag2flox;cTnT-Cre and WT siblings (3 KO and 2 WT replicates). Jag1flox;jag2flox;cTnT-Cre and WT siblings (3 KO and 2 WT replicates). MFng Gain Of Function using Tie2 driven Cre expression: RNA was isolated from pooled heart ventricles of 4 E15.5 embryos per replicate. MFng;Tie2-Cre and WT siblings (4 GOF and 4 WT replicates). For Dll4, Noth1 and Jag1 KOs, libraries were prepared using the standard Illumina TrueSeq RNASeq library preparation kit and sequenced in a GAIIx Illumina sequencer using a 75bp single end elongation protocol. For Jag2 and Jag1Jag2 KOs and MFng GOF libraries were prepared prepared using the NEBNext Ultra RNA Library Prep Kit for Illumina and sequenced in a HiSeq2500 Illumina sequencer using a 61bp single end elongation protocol

Publication Title

Sequential Notch activation regulates ventricular chamber development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062067
Telomerase is essential for zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Unlike human hearts, zebrafish hearts efficiently regenerate after injury. Regeneration is driven by the strong proliferation response of its cardiomyocytes to injury. In this study, we show that active telomerase is required for cardiomyocyte proliferation and full organ recovery, supporting the potential of telomerase therapy as a means of stimulating cell proliferation upon myocardial infarction. Overall design: Heart transcriptomes of WT and telomerase defective adult zebrafish animals were profiled by RNASeq, in control conditions and 3 days after heart cryoinjury.

Publication Title

Telomerase Is Essential for Zebrafish Heart Regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP044736
Deficiency in glucose transporter 12 results in heart failure and a diabetic phenotype in zebrafish
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cardiomyopathies-associated metabolic pathologies (e.g. T2D and insulin resistance) are a leading cause of mortality. It is known that the association between the pathologies works in both directions, where heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin regulated glucose transporters and the development of cardiomyopathies, we set out to study GLUT12. GLUT12 is a novel insulin regulated GLUT expressed in the main insulin sensitive tissues such as cardiac and skeletal muscle and adipose tissue. This study investigates the role of GLUT12 in heart failure and diabetes by developing a model for glut12 deficiency in zebrafish. Overall design: 6 samples in total were analyzed. 3 replicates from control samples (injected with contol MO) and 3 replicates from glut12 morphant samples (injected with glut12 splice MO). In each sample 10 embryos were pooled.

Publication Title

GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP065571
Sequential ligand-dependent Notch signaling activation regulates valve primordium formation and morphogenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Our studies identify a mechanism of signaling crosstalk during valve morphogenesis that sheds light on the origin of congenital heart defects associated with reduced Notch function. Overall design: Aortic and pulmonary cardiac valves were isolated by laser microdissection from WT and Jag1flox;Nkx2.5-Cre mouse embryos at stage E14.5, and their expression profile characterized by RNA-Seq.

Publication Title

Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE134614
Expression data from betalains treated C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconAffymetrix C. elegans Gene 1.1 ST Array

Description

Effects of betalains in C. elegans gene expression is studied, as our previous results showed a lifespan extension effect produced by theses molecules

Publication Title

Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE20935
Gene expression in NKR-P1B+ versus Ly49s3+ rat NK cells
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Two major subsets of rat natural killer (NK) cells can be distinguished based on their expression of either the Ly49s3 or the NKR-P1B lectin-like receptor. Ly49s3+ NK cells, but not NKR-P1B+ NK cells, express a wide range of Ly49 receptors.

Publication Title

Two complementary rat NK cell subsets, Ly49s3+ and NKR-P1B+, differ in phenotypic characteristics and responsiveness to cytokines.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact