refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE88919
Mining the microbiome for modulatory effects on the murine intestinal transcriptome
  • organism-icon Mus musculus
  • sample-icon 148 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. We comprehensively identified the modulatory effects of phylogenetically diverse human gut microbes on the murine intestinal transcriptome. Gene-expression profiles were generated from the whole-tissue intestinal RNA of mice colonized with various single microbial strains. The selection of microbe-specific effects, from the transcriptional response, yielded only a small number of transcripts, indicating that symbiotic microbes have only limited effects on the gut transcriptome overall. Moreover, none of these microbe-specific transcripts was uniformly induced by all microbes. Interestingly, these responsive transcripts were induced by some microbes but repressed by others, suggesting different microbes can have diametrically opposed consequences.

Publication Title

Mining the Human Gut Microbiota for Immunomodulatory Organisms.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE87678
Transcriptional response of small intestinal epithelial cells (S-IECs) to bacterial monocolonization
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Here we analyzed the transcriptional profile of S-IECs sorted from GF and monocolonized mice (C. histolyticum and B. adolescentis), as well as SPF mice colonized with SFB or not.

Publication Title

Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP092209
Transcriptional response of small-intestinal lamina propria CD4+ T cells to bacterial colonization
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We analyzed the transcriptional profile of small-intestinal lamina propria (SI-LP) CD4+ T cells isolated from germ-free and mice monocolonized with Bifidobacterium adolescentis, SFB, and Nexabiotic (a 23-strain, Th17-inducing, probiotic mix). Overall design: CD4+ T cells were double-sorted from mice directly into lysis buffer.

Publication Title

Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE68009
Regulatory T cells from colonic lamina propria [array]
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The colonic lamina propria contains a distinct population of Foxp3+ T regulatory cells (Tregs) that modulate responses to commensal microbes. Analysis of gene expression revealed that the transcriptome of colonic Tregs is distinct from splenic and other tissue Tregs. Ror and Helios in colonic Tregs mark distinct populations: Ror+Helios- or Ror-Helios+ Tregs. We uncovered an unanticipated role for Ror, a transcription factor generally considered to be antagonistic to Foxp3. Ror in colonic Tregs accounts for a small but specific part of the colon-specific Treg signature.

Publication Title

MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact