Fzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Specimen part
View SamplesEzh2 epigenetically suppresses developmentally-regulated genes. Ezh2 is highly expressed during development, including in the lung. We knocked out Ezh2 in the developing lung epithelium using a Shh-cre driver which is active in foregut endoderm prior to lung morphogenesis. Many developmentally regulated genes became derepressed in the mutant lungs, leading to defects in lung development.
Ezh2 represses the basal cell lineage during lung endoderm development.
Specimen part
View SamplesEpithelial organs including the lung are known to possess regenerative abilities through activation of endogenous stem cell populations but the molecular pathways regulating stem cell expansion and regeneration are not well understood. Here we show that Gata6 regulates the temporal appearance and number of bronchioalveolar stem cells (BASCs) in the lung leading to the precocious appearance of BASCs and concurrent loss in epithelial differentiation in Gata6 null lung epithelium. This expansion of BASCs is the result of a dramatic increase in canonical Wnt signaling in lung epithelium upon loss of Gata6. Expression of the non-canonical Wnt receptor Fzd2 is down-regulated in Gata6 mutants and increased Fzd2 or decreased -catenin expression rescues, in part, the lung epithelial defects in Gata6 mutants. During lung epithelial regeneration, we show that canonical Wnt signaling is activated in the niche containing BASCs and forced activation of Wnt signaling leads to a dramatic increase in BASC numbers. Moreover, Gata6 is required for proper lung epithelial regeneration and postnatal loss of Gata6 leads to increased BASC expansion and decreased differentiation. Together, these data demonstrate that Gata6 regulated Wnt signaling controls the balance between stem/progenitor expansion and epithelial differentiation required for both lung development and regeneration.
A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration.
No sample metadata fields
View SamplesBoar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included “Ribosome”, “Protein export” and “Oxidative phosphorylation” in liver and “Steroid hormone biosynthesis” and “Gap junction” in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs. Overall design: Total RNA was extracted from liver and testis of 48 Danish Landrace pigs with low- medium and high genetic merit of boar taint and sequenced by Illumina HiSeq 2500.
Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs.
Specimen part, Subject
View SamplesThe arylhydrocarbon receptor is a ligand inducible transcription factor. Known to control xenobiotic metabolizing enzymes, it also affects - depending on the cell type - numerous other genes, either directly or indirectly. With respect to the immune system, persistent activation leads to immunosuppression. We asked how the AhR is involved in Langerhans cells. These antigen presenting cells of the skin are responsible for allergies against chemicals (thus xenobiotic metabolism might be relevant) and a recently detected endogenous ligand, FICZ made by UVB radiation from tryptophane, is particularly abundant in the skin.
Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice.
No sample metadata fields
View SamplesThe transcriptome of murine LC after 24 hours in vivo exposure to a moderate dose of 10 microgram 2,3,7,8-tetrachlorodibenzo-p-dioxin was studied.
Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice.
No sample metadata fields
View SamplesTreatment of cancer cells with anti-cancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumor’s gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anti-cancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2''-deoxycytidine (Decitabine) has limited anti-tumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. Overall design: The transcriptomes, proteomes and HLA peptidomes of the U-87, T98G and LNT-229 GBM human cell lines were analyzed before and after treatment with Decitabine. Overall, the RNA-Seq transcriptome analyses resulted in the identification of above 26000 transcripts, the proteome analyses identified about 7500 proteins and the HLA class I peptidome analyses resulted in above 25000 identified HLA peptides. Two biological repetitions of the transcriptome, three of the proteome and three of the HLA peptidome were performed with each of the cell lines and treatment, resulting in highly reproducible datasets.
Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View SamplesYoung individuals possess distinct properties that adults do not. The juvenile animals show higher activities for growth, healing, learning and plasticity than adults. The machinery for establishing these juvenile properties is not fully understood. To better understand the molecular constituents for the above properties, we performed a comprehensive transcriptome analysis of differently aged cells of mice by high-throughput sequencing. The samples are isolated mouse hepatocytes and caridomyocytes in triplicate. As a result, we identified the genes selectively highly expressed in the young cells. These genes, collectively called as juvenility-associated genes (JAGs), show significant enrichments in the functions such as alternative splicing, phosphorylation and extracellular matrix (ECM). This implies the juvenescence might be achieved by these functions at the cell level. The JAG mutations are associated with progeria syndromes and growth disorders. Thus, the JAGs might organize the juvenile property of young animals and analysis of JAGs may provide scientific and therapeutic approaches toward treating the genetic diseases.
Identification of juvenility-associated genes in the mouse hepatocytes and cardiomyocytes.
Specimen part, Cell line
View SamplesCLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View Samples