refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 72 results
Sort by

Filters

Technology

Platform

accession-icon GSE81071
Gene expression from human discoid (DLE) and subacute (sCLE) cutaneous lupus subtypes
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Cutaneous lupus erythematosus (CLE) is a disfiguring disease that can exist as an independent entity or as a manifestation of systemic lupus erythematosus (SLE) where up to 70% of patients experience lesions during their disease course. Subacute CLE (sCLE) is an inflammatory lesion with associated erythema in papulosquamous or annular formations. Typically, sCLE does not scar but depigmentation can occur. Importantly, sCLE is associated with a higher progression to SLE. Discoid lesions (DLE) are often circular and frequently lead to alopecia and scar formation. sCLE lesions have a higher propensity for photoprovocation and a more robust inflammatory infiltrate following ultraviolet (UV) B exposure. The pathogenic mechanisms which govern the differences between DLE and sCLE remain poorly defined, and this is reflected by the refractory nature of cutaneous lesions to usual lupus therapies. In this study, we evaluated the transcriptional profiles of 26 DLE and 23 sCLE biopsies and compared them to control skin and to each other in order to develop a comprehensive understanding of the similarities and differences between these two clinical subtypes.

Publication Title

Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon-Induced Up-Regulation of Interferon Regulatory Factor 1.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE81072
Gene expression from human keratinocytes isolated from limited systemic sclerosis (lcSSc) and diffuse systemic sclerosis (dcSSc) skin biopsy
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Systemic sclerosis (SSc) is a rare but devastating disease of fibrosis impacting the dermis and multiple organ systems. The prevalence ranges from 4 to 489 cases per million individuals with ten year mortality rates reported around 18 percent. Survival is related to the extent of skin involvement, yet the precise mechanisms driving skin fibrosis in SSc remain unknown. In this study, we analyzed the shared and unique transcriptomic profiles of SSc and normal keratinocytes.

Publication Title

Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE83582
Inflammatory signals linking inverse, erythrodermic and chronic plaque psoriasis
  • organism-icon Homo sapiens
  • sample-icon 102 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Inverse and erythrodermic psoriasis are rare subtypes of psoriasis. Whereas the former is characterized by shiny erythematous non-scaly plaques in the body folds, the latter has widespread redness with fine scale, covering over 80% of the body-surface area, and can be life-threatening. Both are considered to be clinical subtypes of chronic plaque psoriasis, and often co-exist or evolve from plaque psoriasis (Boyd and Menter, 1989; Omland and Gniadecki, 2015), but the pathogenic mechanisms involved are unknown, and current treatments are frequently unsatisfactory. To assess shared and unique processes between chronic plaque, inverse, and erythrodermic psoriasis we analyzed archived formalin-fixed paraffin-embedded biopsies of clinically and histologically confirmed chronic plaque (n=12), inverse (n=40) and erythrodermic psoriasis cases (n=30) and healthy control skin (n=20) using Affymetrix ST 2.1 Arrays. Compared with healthy skin, psoriatic plaque lesions yielded 2450 differentially expressed genes (DEGs) (FDR, p<0.05), inverse psoriasis lesions yielded 408 DEGs (FDR, p<0.05) and erythrodermic psoriasis lesions yielded 447 DEGs (FDR, p<0.05). In total 294 genes were found to be shared among the three disease subtypes (FDR, p<0.05). While the overlap only accounted for 12% of the DEGs in chronic plaque psoriasis, it accounted for 66% and 72% of DEGs in erythrodermic and inverse psoriasis respectively.

Publication Title

IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE79704
Comparison of healthy, plaque psoriasis and pustular psoriasis FFPE skin biopsies
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Generalized pustular psoriasis (GPP) is a rare, debilitating, and often life-threatening inflammatory disease characterized by episodic infiltration of neutrophils into the skin, pustule development, and systemic inflammation, which can manifest in the presence or absence of chronic plaque psoriasis (PV). Current treatments are unsatisfactory thus a better understanding the pathogenesis of GPP is warranted. To assess the pathophysiological differences between GPP and PV we performed a gene expression study on formalin-fixed paraffin-embedded biopsies of GPP (n=30) and PV (n=12) lesions and healthy control (n=20) skin. Compared with healthy skin, GPP lesions yielded 365 and PV 898 differentially expressed genes respectively, with 190 upregulated in both diseases. We detected higher expression of IL-1 and IL-36 cytokines in GPP lesions compared with PV, and this occurred proximal to neutrophils. We show both activated neutrophils and isolated neutrophil proteases can activate IL-36. Diverging from the Th1/Th17 pathophysiology of PV, significantly fewer IL23A, IL17A, IFNG, CXCL9, CXCL10 and MX1 transcripts were detected in GPP lesions. Our data indicate a level of sustained activation of IL-1 and IL-36 in GPP, inducing neutrophil chemokine expression, infiltration and pustule formation, suggesting that the IL-1 and IL-36 inflammatory axes are the main drivers of disease pathology in GPP.

Publication Title

IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP130972
RNA-seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

IL-36 cytokines have recently emerged as mediators of inflammation in autoimmune conditions including psoriasis vulgaris (PsV) and generalized pustular psoriasis (GPP). This study used RNA-seq to profile the transcriptome of primary epidermal keratinocytes (KCs) treated with IL-1B, IL-36A, IL-36B or IL-36G. We identified some early IL-1B-specific responses (8 hours post-treatment), but nearly all late IL-1B responses were replicated by IL-36 cytokines (24 hours post-treatment). Type I and II interferon genes exhibited time-dependent response patterns, with early induction (8 hours) followed by no response or repression (24 hours). Altogether, we identified 225 differentially expressed genes (DEGs) with shared responses to all 4 cytokines at both time points (8 + 24 hours). These involved up-regulation of ligands (IL1A, IL1B, IL36G) and activating proteases (CTSS), but also up-regulation of inhibitors such as IL1RN and IL36RN. Shared IL-1B/IL-36 DEGs overlapped significantly with genes altered in PsV and GPP skin lesions, as well as genes near GWAS loci linked to autoimmune and autoinflammatory diseases (e.g., PsV, psoriatic arthritis, IBD, primary biliary cholangitis). Inactivation of MyD88 adapter protein using CRISPR/Cas9 completely abolished expression responses of such DEGs to IL-1B and IL-36G stimulation. These results provide a global view of IL-1B and IL-36 expression responses in epidermal KCs with fine-scale characterization of time-dependent and cytokine-specific response patterns. Our findings support an important role for IL-1B and IL-36 in autoimmune or autoinflammatory conditions and show that MyD88 adaptor protein mediates shared IL-1B/IL-36 responses. Overall design: Cultures were treated with truncated recombinant human IL-1B, IL-36A, IL-36B or IL-36G (10 ng/ml for IL-1B; 2000 ng/ml for IL-36 cytokines). Three cell lines were used (lines A, B and C) with samples processed in 4 batches. Samples within the same batch are comparable. Experiments were performed with 8 and 24 hours of cytokine treatment (n = 2-3 per time point).

Publication Title

RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes Identifies a Shared MyD88-Dependent Gene Signature.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE142807
Transcriptomic profiling of dermatomyositis lesions.
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The microarray experiment was employed to evaluate the gene expressions in skin lesions of dermatomyositis and healthy controls.

Publication Title

IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon SRP076982
Transcriptome analysis for anatomically separate psoriatic plaques highlight individualized expression patterns
  • organism-icon Homo sapiens
  • sample-icon 259 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To evaluate the transcriptomes of lesional skin from different body parts of the same individual. Specifically, we conducted a transcriptomic study to investigate expression variability for diseased samples taken from different anatomic regions of same patient, and to compare the variability to between individuals variability. Overall design: 5 psoriasis patients, each with 4 psoriatic and 1 uninvolved skin biopsies. Totally 25 RNA-seq experiments conducted.

Publication Title

Transcriptional determinants of individualized inflammatory responses at anatomically separate sites.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon SRP015332
Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes
  • organism-icon Caenorhabditis elegans
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3’ adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127 % and 121 %, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality. Overall design: Sequencing of mRNA from C. elegans with libraries of four differing insert sizes

Publication Title

Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes.

Sample Metadata Fields

Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE17849
Effect of Dietary Grain on Rumen Papillae Gene Expression in Holstein Dairy Cows
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Four mature, non-lactating dairy cattle were transitioned from a high forage diet (HF; 0% grain) to a high grain diet (HG; 65% grain) that was fed for three weeks. Rumen papillae biopsies were performed during the HF baseline (week 0) and after the first (week 1) and third week (week 3) of the grain challenge to create a transcript profile for the the short and long-term adaption of the rumen epithelium during ruminal acidosis.

Publication Title

Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE44285
Atxn1L is a novel regulator of Hematopoietic Stem Cell Quiescence
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared gene expression differences in Atxn1L knockout vs wildtype HSCs

Publication Title

Ataxin1L is a regulator of HSC function highlighting the utility of cross-tissue comparisons for gene discovery.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact