RIPK4 but not the related kinases RIPK1, RIPK2, and RIPK3 caused similar transcriptional changes to Wnt3a. Overall design: PA1 cells were transfected by 8ug RIPK1, RIPK2, RIPK3, or RIPK4 for 48h, RNA were extracted and sequenced.
Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling.
Cell line, Subject
View SamplesWe generated chimeric mice with livers that were predominantly repopulated with human hepatocytes. Hepatocytes were isolated from the chimeric mouse livers and their gene expressions were compared with hepatocytes isolated from normal human livers . Cluster and principal components analyses showed that gene expression profiles of hepatocytes from the chimeric mice and those from normal human livers were extremely closed.
Morphological and microarray analyses of human hepatocytes from xenogeneic host livers.
Sex, Age, Specimen part, Race
View SamplesWe performed microarray experiments to examine gene expression in human tissues. This data was used for comparison with our humanized mouse study (GEO ID GSE33846) and threshold determination of our tiling array data (GEO ID GSE18490, public in the near future).
Morphological and microarray analyses of human hepatocytes from xenogeneic host livers.
Specimen part, Cell line, Race
View SamplesTranscriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture.
Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.
Specimen part
View SamplesHuman induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (mDA) neurons for cell replacement therapy for Parkinson's disease (PD). However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. To eliminate these unwanted cells, cell sorting using antibodies for specific markers such as CORIN or ALCAM have been developed, but neither marker is specific for ventral midbrain. Here, we employed a double-selection strategy for cells expressing both CORIN and LMX1A::GFP and report a novel cell surface marker to enrich mDA progenitors, LRTM1. When transplanted into 6-OHDA-lesioned rats, human iPSC-derived LRTM1+ cells survived and differentiated into mDA neurons in vivo, resulting in significant improvement in motor behavior without tumor formation. In addition, LRTM1+ cells exhibited efficient survival of mDA neurons in the brain of an MPTP-treated monkey. Thus, LRTM1 can provide a powerful tool for efficient and safe cell therapy for PD patients.
Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1.
Specimen part
View SamplesBasic helix-loop-helix (bHLH) proneural transcription factors (TFs) Ascl1 and Neurog2 are integral to the development of the nervous system. Here, we investigated the molecular mechanisms by which Ascl1 and Neurog2 control the acquisition of generic neuronal fate and impose neuronal subtype identity. Using direct neuronal programming of embryonic stem cells, we found that Ascl1 and Neurog2 regulate distinct targets by binding to largely different sets of sites. Their divergent binding pattern is not determined by the previous chromatin state but distinguished by specific E-box enrichments which reflect the DNA sequence preference of the bHLH domain. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity landscapes that shape the binding and activity of downstream TFs during neuronal specification. Our findings suggest that proneural factors contribute to neuronal diversity by differentially altering the chromatin landscapes that shape the binding of neuronally expressed TFs. Overall design: Single-cell RNA-seq was used to characterize gene expression in mixed populations of mES cells containing induced expression of either Ascl1 or Neurog2.
Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes.
Specimen part, Treatment, Subject
View SamplesWe used microarrays to select the genes associated glioma patients survival.
Gene expression signature-based prognostic risk score in patients with glioblastoma.
Sex, Age, Disease, Disease stage
View SamplesDirect programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: Gene expression was characterized by single-cell RNA-seq during the direct programming of ES cells into motor neurons using over-expression of Ngn2-Isl1-Lhx3 programming factors.
A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
Specimen part, Cell line, Treatment, Subject
View SamplesDirect programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: For bulk cell RNA-seq analysis, cells were collected at different time points after NIL induction and RNA isolated using TRIzol LS (Life Technologies) followed by purification using Qiagen RNAeasy kit
A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
Specimen part, Cell line, Subject
View SamplesGene expression analysis to compare control cells and sorted cells
Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.
Specimen part
View Samples