The aim of this dataset was to study in detail the transcription kinetics initiated by cytokines IL-12 and IL-4 in early differentiation of Th1 and Th2 cells, respectively.
An integrative computational systems biology approach identifies differentially regulated dynamic transcriptome signatures which drive the initiation of human T helper cell differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Standard of hygiene and immune adaptation in newborn infants.
Sex
View SamplesThe prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu.
Standard of hygiene and immune adaptation in newborn infants.
Sex
View SamplesThe prevalence of immune-mediated diseases such as allergies and autoimmune diseases is on the rise in the developed world. Microbial exposure is known to modulate the risk for these diseases. In order to explore differences in the gene expression patterns induced in utero in infants born in contrasting standards of living and hygiene, we collected umbilical cord blood RNA samples from full-term newborn infants born with normal vaginal delivery in Finland (modern society), Estonia (rapidly developing society) and the Republic of Karelia, Russia (poor economical conditions). Transcriptomic profiles were analyzed using whole genome microarrays including gender, gestational age, birth month and HLA allele genotype as confounding variables in the analysis. The data revealed that the whole blood transcriptome of Finnish and Estonian neonates differ from their Karelian counterparts. Samples from Karelian infants had an increase in transcripts associated with LPS induction and bacterial sepsis observed in 1-year-old infants in earlier studies. The results suggest exposure to toll like receptor (TLR) ligands and a more matured immune response in infants born in Petrozavodsk compared to the Finnish and Estonian infants. These results further support the concept of a conspicuous plasticity in the developing immune system: the environmental factors that play a role in the susceptibility/protection towards immune-mediated diseases begin to shape the neonatal immunity already in utero and direct the maturation of both the adaptive and the innate immune responses in accordance with the surrounding microbial milieu.
Standard of hygiene and immune adaptation in newborn infants.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesUsing array comparative genomic hybridization (aCGH), a large number of deleted genomic regions have been identified in human cancers. However, subsequent efforts to identify target genes selected for inactivation in these regions have often been challenging. We integrated here genome-wide copy number data with gene expression data and non-sense mediated mRNA decay rates in breast cancer cell lines to prioritize gene candidates that are likely to be tumour suppressor genes inactivated by bi-allelic genetic events. The candidates were sequenced to identify potential mutations. This integrated genomic approach led to the identification of RIC8A at 11p15 as a putative candidate target gene for the genomic deletion in the ZR-75-1 breast cancer cell line. We identified a truncating mutation in this cell line, leading to loss of expression and rapid decay of the transcript. We screened 127 breast cancers for RIC8A mutations, but did not find any pathogenic mutations. No promoter hypermethylation in these tumours was detected either. However, analysis of gene expression data from breast tumours identified a small group of aggressive tumours that displayed low levels of RIC8A transcripts. Real-time PCR analysis of 38 breast tumours showed a strong association between low RIC8A expression and the presence of TP53 mutations (P=0.006). We demonstrate a data integration strategy leading to the identification of RIC8A as a gene undergoing a classical double-hit genetic inactivation in a breast cancer cell line, as well as in vivo evidence of loss of RIC8A expression in a subgroup of aggressive TP53 mutant breast cancers.
Data integration from two microarray platforms identifies bi-allelic genetic inactivation of RIC8A in a breast cancer cell line.
Sex, Disease, Cell line, Treatment, Time
View Samples