small RNA libraries from total RNA isolated from young adult animals Overall design: Wild-type and rem-1 mutant animals were used for RNA isolation. Regular libraries were made using adaptor ligations at both ends. In addition, librraies were made from oxidised and TAP treated RNA.
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.
Cell line, Subject
View Samplessmall RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesIn zebrafish, parental exposure to ionizing radiation has been associated with effects in offspring, such as increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 hours post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy). One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. One year after exposure, embryos from the 8.7 mGy/h group exhibited 2455(61.8% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, which could be linked to effects in adults and offspring, such as DNA damage and lipid peroxidation. Interestingly, pathways between the two groups were oppositely regulated. Our results indicate latent effects following ionizing radiation exposure in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations. Overall design: One month after exposure, mRNA from F1 5.5 hpf embryos from parents exposed to 8.7 and 53 mGy/h gamma radiation during gametogenesis was sequenced on the Illumina 4000 platform with three replicas per treatment. One year after exposure, mRNA from F1 embryos from the same parents exposed to 8.7 mGy/h was sequenced with three biological replicates. In both cases, F1 embryos from non-exposed parents were used as control and mRNA sequenced in triplicates, taken at the same time points as the exposed samples.
Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesArp2/3 complex assembles branched actin filaments key to many cellular processes, but its organismal roles remain poorly understood. Here we employed conditional arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis.We found that depletion of the Arp2/3 complex by knockout of arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2-target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistently, we unveiled that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocytes'' shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. Overall design: Gene expression profile of wt and ARPC4 ko epidermis
Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.
Specimen part, Cell line, Subject
View SamplesArp2/3 complex assembles branched actin filaments key to many cellular processes, but its organismal roles remain poorly understood. Here we employed conditional arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis.We found that depletion of the Arp2/3 complex by knockout of arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2-target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistently, we unveiled that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocytes'' shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. Overall design: Gene expression profile of wt, ARPC4 ko and EGFP-Nrf2 expressing keratinocytes.
Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.
Specimen part, Cell line, Subject
View Samples