refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 720 results
Sort by

Filters

Technology

Platform

accession-icon GSE49011
Expression profile of sweat gland label retaining cells (LRCs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have used the slow cycling property, found in hair follicle stem cells, to look for LRCs in sweat glands as putative stem cells.

Publication Title

Label retaining cells (LRCs) with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP115944
Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2a and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

Reduced eukaryotic Initiation Factor 2 (eIF2)a phosphorylation (p-eIF2a) enhances protein synthesis, memory formation, and addiction-like behaviors. However, p-eIF2a has not been examined with regard to psychoactive cannabinoids and cross-sensitization. Here, we find that a cannabinoid receptor agonist (WIN 55,212-2 mesylate [WIN]) reduced p-eIF2a in vitro by upregulating GADD34 (PPP1R15A), the recruiter of protein phosphatase 1 (PP1). The induction of GADD34 was linked to ERK/CREB signaling and to CREB-binding protein (CBP)-mediated histone hyperacetylation at the Gadd34 locus. In vitro, WIN also upregulated eIF2B1, an eIF2 activator subunit. We next found that WIN administration in vivo reduced p-eIF2a in the nucleus accumbens of adolescent, but not adult, rats. By contrast, WIN increased dorsal striatal levels of eIF2B1 and ?FosB among both adolescents and adults. In addition, we found cross-sensitization between WIN and cocaine only among adolescents. These findings show that cannabinoids can modulate eukaryotic initiation factors, and they suggest a possible link between p-eIF2a and the gateway drug properties of psychoactive cannabinoids. Overall design: RNAseq from PC12 cell line with a 6 hour DMSO or WIN treatment.

Publication Title

Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52650
Gene expression architecture of mouse dorsal and tail skin reveals functional differences in inflammation and cancer
  • organism-icon Mus musculus
  • sample-icon 307 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.

Publication Title

Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE52524
Network Biology of the Skin [1]
  • organism-icon Mus musculus
  • sample-icon 195 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.

Publication Title

Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE52639
Network Biology of the Skin [2]
  • organism-icon Mus musculus
  • sample-icon 153 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.

Publication Title

Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE95421
Gene expression architecture of mouse dorsal and tail skin reveals functional differences in inflammation and cancer [telogen/anagen]
  • organism-icon Mus musculus
  • sample-icon 130 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Hair follicles are self-renewing organs within the skin which cycle through periods of growth and destruction, with an intervening period of outward quiescence. The hair follicle cycle is driven by Hedgehog and Wnt signaling and affects epithelial thickness, melanin production, immune function, and tumor susceptibility. We have previously shown that somatic alterations to the genome affect the genetic architecture of the skin. This study examines how the hair follicle cycle affects gene the genetic architecture in vivo by genomic and genetic analysis of 343 genetically heterogeneous mice during the hair follicle growth phase (anagen) and quiescent phase (telogen). We use eQTL analysis and differential correlation to identify changes in metabolic and stem cell activity not detected by differential expression. Germline influence in gene expression is profoundly higher during anagen, but this increase is not a simple factor of higher levels of gene expression. The most strongly induced eQTLs were involved in cellular energy metabolism and melanogenesis rather than hair follicle growth or hedgehog signaling. We demonstrate that hair follicle and circadian rhythm pathways are sexually dimorphic, but do not find evidence for an effect of sex on eQTL networks. We also use eQTL gene network analysis to identify candidate causal relationships between expression of genes in the hair follicle and melanin pathways, identifying Mcoln3 as a candidate for the familial melanoma locus on 1p22. To lower the bioinformatic barriers to eQTL network analysis we produced CARMEN, a free open-source stand-alone software package. This study demonstrates how to perform a systems genetic analysis of a heterogeneous tissue studied in vivo under physiologically relevant growth signals.

Publication Title

Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE82067
Gene expression architecture of mouse dorsal and tail skin reveals functional differences in inflammation and cancer: TPA time course
  • organism-icon Mus musculus
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.

Publication Title

Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16745
Changes in gene expression resulting from expression of MN1 in human CD34+ cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyper-proliferation and restores myeloid differentiation. Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid (ATRA) induced granulocytic differentiation. Here, we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34+ hematopoietic cells, lineage depleted mouse bone marrow cells, and bipotential (granulocytic/monocytic) human AML-cell lines. We show that exogenous MN1 stimulated the growth of CD34+ cells, which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and AML cell lines. Endogenous MN1 expression was higher in human CD34+ cells compared to both primary and in vitro differentiated monocytes and granulocytes. Microarray and real time RT-PCR analysis of MN1-overexpressing CD34+ cells showed down regulation of CEBPA and its downstream target genes. Re-introduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells

Publication Title

Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48880
Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We asked whether combining Notch and VEGF blockade would enhance suppression of tumor angiogenesis and growth, using the NGP neuroblastoma model. NGP tumors were engineered to express a Notch1 decoy construct (N1D), which restricts Notch signaling, and then treated with either the anti-VEGF antibody bevacizumab or vehicle. Combining Notch and VEGF blockade led to blood vessel regression, increasing endothelial cell apoptosis and disrupting pericyte coverage of endothelial cells. Combined Notch and VEGF blockade did not affect tumor weight, but did additively reduce tumor viability. Our results indicate that Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis, and show that concurrent blockade disrupts primary tumor vasculature and viability further than inhibition of either pathway alone.

Publication Title

Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5078
Hippocampal transcript profile in young and middle-aged mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze.

Publication Title

Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact