Worms that inherited the sperm genome lacking the repressive mark H3K27me3 (K27me3 M+P-) misexpress genes in their germlines when compared to genetically identitical worms that inherited the sperm genome with H3K27me3 (K27me3 M+P+). Overall design: Transcriptome profiles of hermaphrodite germlines from hybrid worms that inherited the sperm genome with H3K27me3 (4 replicates of K27me3 M+P+) vs without H3K27me3 (4 replicates K27me3 M+P-) to compare to 4 replicates of 'wildtype'.
Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans.
Specimen part, Cell line, Subject
View SamplesEVI1 is one of the famous poor prognostic markers for a chemotherapy-resistant acute myeloid leukemia (AML). To identify molecular targets on the surface of leukemia cells with EVI1high expression, we compared the gene expression profiles of several AML cell lines by DNA microarray
CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression.
Cell line
View SamplesAssisted reproductive technologies, including in vitro fertilization (IVF), are now frequently used, and increasing evidence indicates that IVF causes gene expression changes in children and adolescents that increase the risk of metabolic diseases. Although such gene expression changes are thought to be due to IVF-induced epigenetic changes, the mechanism remains elusive.
The transcription factor ATF7 mediates <i>in vitro</i> fertilization-induced gene expression changes in mouse liver.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.
Specimen part, Treatment
View SamplesTrithorax group (TrxG) and Polycomb group (PcG) proteins are two mutually antagonistic chromatin modifying complexes, however, how they together mediate transcriptional counterregulation remains unknown. Genome-wide analysis revealed that binding of Ezh2 and Menin, central members of the PcG and TrxG complexes, respectively, were reciprocally correlated. Moreover, we identified a developmental change in the positioning of Ezh2 and Menin in differentiated T lymphocytes compared to embryonic stem cells. Ezh2-binding upstream and Menin-binding downstream of the transcription start site (TSS) was frequently found at genes with higher transcriptional levels, and Ezh2-binding downstream and Menin-binding upstream was found at genes with lower expression in T lymphocytes. Interestingly, of the Ezh2 and Menin co-occupied genes, those exhibiting occupancy at the same position displayed greatly enhanced sensitivity to loss of Ezh2. Finally, we also found that different combinations of Ezh2 and Menin occupancy were associated with expression of specific functional gene groups important for T cell development. Therefore, spatial cooperative gene regulation by the PcG and TrxG complexes may represent a novel mechanism regulating the transcriptional identity of differentiated cells. Overall design: Gene expression profiles of ES cells, B cells and T cells are assessed by RNA-seq.
Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.
Specimen part, Cell line, Treatment, Subject
View SamplesTrithorax group (TrxG) and Polycomb group (PcG) proteins are two mutually antagonistic chromatin modifying complexes, however, how they together mediate transcriptional counterregulation remains unknown. Genome-wide analysis revealed that binding of Ezh2 and Menin, central members of the PcG and TrxG complexes, respectively, were reciprocally correlated. Moreover, we identified a developmental change in the positioning of Ezh2 and Menin in differentiated T lymphocytes compared to embryonic stem cells. Ezh2-binding upstream and Menin-binding downstream of the transcription start site (TSS) was frequently found at genes with higher transcriptional levels, and Ezh2-binding downstream and Menin-binding upstream was found at genes with lower expression in T lymphocytes. Interestingly, of the Ezh2 and Menin co-occupied genes, those exhibiting occupancy at the same position displayed greatly enhanced sensitivity to loss of Ezh2. Finally, we also found that different combinations of Ezh2 and Menin occupancy were associated with expression of specific functional gene groups important for T cell development. Therefore, spatial cooperative gene regulation by the PcG and TrxG complexes may represent a novel mechanism regulating the transcriptional identity of differentiated cells.
Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.
Specimen part
View SamplesCardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent cardiac muscle differentiation. However, downstream effectors of Sox17 remained to be proven functionally. In this study, we used genome-wide profiling of Sox17-dependent genes in AB2.2 cells, RNA interference, chromatin immunoprecipitation, and luciferase reporter genes to dissect this pathway. Sox17 was required not only for Hhex (a second endodermal transcription factor) but also for Cer1, a growth factor inhibitor from endoderm that, like Hhex, controls mesoderm patterning in Xenopus toward a cardiac fate. Suppressing Hhex or Cer1 blocked cardiac myogenesis, although at a later stage than induction of Mesp1/2. Hhex was required but not sufficient for Cer1 expression. Over-expression of Sox17 induced endogenous Cer1 and sequence-specific transcription of a Cer1 reporter gene. Forced expression of Cer1 was sufficient to rescue cardiac differentiation in Hhex-deficient cells. Thus, Hhex and Cer1 are indispensable components of the Sox17 pathway for cardiopoiesis in mESCs, acting at a stage downstream from Mesp1/2.
Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells.
Cell line
View SamplesLeft ventricle myocytes from Dahl rats with a normal or failed heart was subjected to mRNA quantitation or ChIP-on-chip experiments with Affymetrix Rat Genome 230 2.0 microarrays.
Genome-wide histone methylation profile for heart failure.
No sample metadata fields
View SamplesChronic infections by hepatitis B virus (HBV) and hepatitis C virus (HCV) appear to be the most significant causes of hepatocellular carcinoma (HCC). Aberrant promoter methylation is known to be deeply involved in cancer, including HCC. In this study, we analyzed aberrant promoter methylation on genome-wide scale in 6 HCCs including 3 HBV-related and 3 HCV-related HCCs, 6 matched noncancerous liver tissues and 3 normal liver tissues by methylated DNA immunoprecipitation-on-chip analysis. Candidate genes with promoter methylation were detected more frequently in HCV-related HCC. Candidate genes methylated preferentially to HBV-related or HCV-related HCCs were detected and selected, and methylation levels of the selected genes were validated using 125 liver tissue samples, including 61 HCCs (28 HBV-related HCCs and 33 HCV-related HCCs) and matched 59 matched noncancerous livers, and 5 normal livers, by quantitative methylation analysis using MALDI-TOF mass spectrometry. Among analyzed genes, preferential methylation in HBV-related HCC was validated in 1 gene only. However, 15 genes were found methylated preferentially in HCV-related HCC, which was independent from age. Hierarchical clustering of HCC using these 15 genes stratified HCV-related HCC as a cluster of frequently methylated samples. The 15 genes included genes inhibitory to cancer-related signaling such as RAS/RAF/ERK and Wnt/b-catenin pathways. It was indicated that genes methylated preferentially in HCV-related HCC exist, and it was suggested that DNA methylation might play an important role in HCV-related HCC by silencing cancer-related pathway inhibitors.
Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesEpigenetically silenced Ink4a-Arf locus is activated by loss of H3K27me3 in cellular senescence, where secreted factor expression is also involved. Here we analyzed epigenome and transcriptome alteration during Ras-induced senescence using mouse embryonic fibroblast (MEF). Seventeen genes with H3K27me3 loss and H3K4me3 gain showed marked upregulation, including p16Ink4a and Bmp2, a secreted factor for BMP/SMAD signal. Smad6, specific BMP/SMAD pathway inhibitor, was identified as the only one gene showing de novo H3K27 trimethylation with H3K4me3, resulting in strong repression. Ras-activated cells senesced with SMAD1/5/8 phosphorylation, and they escaped from senescence with decreased SMAD1/5/8 phosphorylation when introducing Smad6 or knocking-down Bmp2.
Activation of Bmp2-Smad1 signal and its regulation by coordinated alteration of H3K27 trimethylation in Ras-induced senescence.
Specimen part, Treatment
View Samples