This SuperSeries is composed of the SubSeries listed below.
A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.
Specimen part, Cell line
View SamplesA multilayered transcription regulatory system is unveiled, where protein- and RNA-based repressors are super-imposed in combinatorial fashion to govern the timely triggering of an essential step of erythropoiesis
A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.
Specimen part
View SamplesHere we show that in neural progenitor cells (NPCs) TRIM28 silences transcription of two groups of endogenous retroviruses (ERVs): IAP1 and MMERVK10C. Derepression of ERVs in Trim28-deficient NPCs was associated with a loss of H3K9me3 and resulted in transcriptional upregulation and reverse transcription. These findings demonstrate a unique dynamic transcriptional regulation of ERVs in NPCs. Overall design: Analysis of upregulation of ERVs in Trim28-deficient NPCs
TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells.
Specimen part, Cell line, Subject
View SamplesRNA-seq and expression profile of WT and ZFP57 KO ES cells Overall design: RNA was extracted from both cell lines, PolyA RNA were extracted and RNA-seq was performed
In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
KAP1 regulates gene networks controlling T-cell development and responsiveness.
Specimen part
View SamplesThe modulation of chromatin status at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by KAP1, the universal cofactor of KRAB-containing Zinc Finger Proteins (KRAB-ZFPs), a tetrapod-restricted family of transcriptional repressors. T cell-specific Kap1 knockout mice displayed a significant expansion of immature thymocytes and imbalances in the ratios of mature T cells in the thymus and the spleen, with impaired responses to TCR stimulation. Transcriptome and chromatin studies revealed that KAP1 directly controls the expression of a number of genes involved in TCR and cytokine signalling, among which Traf1 and FoxO1, and is strongly associated with cis-acting regulatory elements marked by the H3K9me3 repressive mark on the genome of thymic T cells. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB/ZFPs are selectively expressed in T lymphoid cells. These results reveal the so far unsuspected yet important role of KRAB/KAP1-mediated epigenetic regulation in T lymphocyte differentiation and activation.
KAP1 regulates gene networks controlling T-cell development and responsiveness.
No sample metadata fields
View SamplesWe reprogrammed human CD34+ cells from cord blood using a lentiviral vector encoding OCT4, SOX2 and KLF4.We collected RNA from parental CD34+ cells (3samples), reprogramming timepoints (9 timepoints), iPS clones derived from this experiment (6 clones), and human ES cell lines (9 samples). All samples were sequenced at 100bp reads. Overall design: Endogenous retroelement expression during reprogramming
Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function.
Specimen part
View SamplesChromatin remodeling is fundamental for B cell differentiation. Here, we explored the role in this process of KAP1, the cofactor of KRAB-ZFP transcriptional repressors. B lymphoid-specific Kap1 knockout mice displayed reduced numbers of mature B cells, lower steady-state levels of antibodies and accelerated rates of decay of neutralizing antibodies following viral immunization. Transcriptome analyses of Kap1-deleted B splenocytes revealed an upregulation of PTEN, the enzymatic counter-actor of PIK3 signaling, and of genes encoding DNA damage response factors, cell-cycle regulators and chemokine receptors. ChIP/seq studies established that KAP1 bound at or close to a number of these genes, and controlled chromatin status at their promoters. Genome-wide, KAP1-binding sites avoided active B cell-specific enhancers and were enriched in repressive histone marks, further supporting a role for this molecule in gene silencing in vivo. Likely responsible for tethering KAP1 to at least some of these targets, a discrete subset of KRAB-ZFPs is enriched in B lymphocytes. This work thus reveals the role of KRAB/KAP1-mediated epigenetic regulation in B cell development and homeostasis.
KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function.
Specimen part
View SamplesIn plants, many gene transcripts are very unstable, which is important for the tight control of their temporal and spatial expression patterns. To identify cellular factors controlling the stability of unstable mRNAs in plants, we used luciferase imaging in Arabidopsis to isolate a recessive mutant, stabilized 1 (sta1), with enhanced stability of the normally unstable luciferase transcript. The sta1 mutation also causes the stabilization of some endogenous gene transcripts and has a range of developmental and stress response phenotypes. STA1 encodes a nuclear protein similar to the human U5 snRNP-associated 102-kDa protein and to the yeast pre-mRNA splicing factor Prp1p and Prp6p. STA1 expression is up-regulated by cold stress, and the sta1 mutant is defective in the splicing of the cold-induced COR15A gene. Our results show that STA1 is a pre-mRNA splicing factor required for not only splicing but also the turnover of unstable transcripts and that it has an important role in plant responses to abiotic stresses.
STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis.
No sample metadata fields
View Samples