We had previously discovered that the transcription factor Cited2 was highly induced during trophoblast differentiation. In this study, we used an lentiviral shRNA strategy to decrease Cited2 expression in Rcho-1 trophoblast cells. A RNA-seq approach was used to determine global transcript differences inRcho-1 knockdown cells compared to control cells. Overall design: Rcho-1 cells transduced with control shRNAs were used as controls. Cells transduced with shRNAs targetingCited2 were used as treatment.Cells were differentiated for 8 days and the analyses were done.
CITED2 modulation of trophoblast cell differentiation: insights from global transcriptome analysis.
No sample metadata fields
View SamplesIn hemochorial placentation, trophoblast stem cells differentiate into multiple lineages to aquire specific functions, such as invasive and endocrine phenotype. FOSL1 has been identified as a key regulator for trophoblast differentiation. We used microarray to detail mechanisms underlying FOSL1 signaling pathway in trophoblast differentiation.
Dynamic Regulation of AP-1 Transcriptional Complexes Directs Trophoblast Differentiation.
Specimen part, Cell line
View SamplesWe had previously discovered that the transcription factor OVO-like 1 (OVOL1) was highly induced during trophoblast differentiation. In this study, we used an lentiviral shRNA strategy to decrease OVOL1 expression in BeWo trophoblast cells. Control cells were transduced with shRNAs targeting no known mammalian transcript (shCont). Following stimulation of differentiation (48h exposure to 8-bromo-cyclic adenosine monophosphate), a RNA-seq approach was used to determine global transcript differences in OVOL1-knockdown cells compared to control cells. Overall design: Trophoblast cells transduced with control shRNAs were used as controls. Cells transduced with shRNAs targeting OVOL1 were used as treatment. All cells received 250 uM 8-bromo-cyclic adenosine monophosphate to stimulate differentiation. Three independent replicates of control and treatment groups were analyzed.
OVO-like 1 regulates progenitor cell fate in human trophoblast development.
No sample metadata fields
View SamplesBeWo trophoblast cells differentiate in response to expsure to cyclic adenosine monophosphate (cAMP) analogs. Differentiation includes syncytialization (fusion) and hormonogenesis. The goal of this study was to globally determine transcripts differentially expressed in BeWo trophoblast cells following a 24-h exposure to 250 uM 8-bromo-cAMP.
OVO-like 1 regulates progenitor cell fate in human trophoblast development.
Treatment
View SamplesPlacentation differs in the BN rat strain when compared to HSD and DSS rat strains. Intrauterine trophoblast invasion is shallow and the junctional zone is underdeveloped in the BN rat. These structural differences are striking but their quantification is not conducive to high throughput analyses. In the rat, the junctional zone can be readily dissected and is more homogenous than other components of the placentation site. HSD and BN rat gestation day 18.5 junctional zone gene expression profiles were determined using DNA microarray analysis to identity placenta-associate quantitate traits.
Chromosome-substituted rat strains provide insights into the genetics of placentation.
Specimen part
View SamplesRNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (?3) and another DNA binding domain (DBD) mutant with exon 4 deletion (?4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ?3 or ?4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value =0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ?3 compared to the ?4 mutant group. As both of the mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ?3 and ?4 mutant rats were emphasized and further analyzed in the companion article “ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation” (Khristi et al., 2018).
ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation.
No sample metadata fields
View SamplesAnalysis of transcriptomic profile of TS cells grown in ambient (21% oxygen) and hypoxic (0.5% oxygen) conditions.
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
Specimen part, Treatment
View SamplesAnalysis of transcriptomic profile of metrial gland tissue in ambient (21% oxygen) and hypoxic (10.5% oxygen) conditions.
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
Specimen part, Treatment
View SamplesPurpose: Popular methods for library preparation in RNA-seq such as Illumina TruSeq® RNA v2 kit use a poly-A pulldown strategy. Such methods can cause loss of coverage at the 5’ end of genes, impacting the ability to detect fusions when used on degraded samples. The goal of this study was to quantify the effects RNA degradation has on fusion detection when using poly-A selected mRNA and to identify the variables involved in this process Methods: Total RNA was extracted from solid tumor tissue and whole blood using the Qiagen® miRNeasy Micro and Mini kits, respectively. The KU812 cell line was purchased from Sigma-Aldrich (St. Louis, MO) and UHR (Universal Human Reference RNA) was purchased from Agilent (Santa Clara, CA). UHR is a mixture of cell lines derived from breast adenocarcinoma, hepatoblastoma, cervix adenocarcinoma, testis embryonal carcinoma, gliobastoma, melanoma, liposarcoma, histiocytic lymphoma, lymphoblastic leukemia and plasmocytoma. For Degradation experiments, two micrograms of human universal reference RNA (UHR) (Agilent Technologies, Santa Clara, CA) and 1ug of RNA extracted from KU812 cell line (purchased from ATCC) were degraded at 74oC from 1 to 11 minutes in 1 minute intervals, using the NEBNext® Magnesium RNA Fragmentation Module Kit (NEB, Ipswich, MA). RNA was then purified and concentrated with RNeasy MinElute Cleanup Kit (Qiagen, Valencia, CA). Results: In this study, we designed experiments using artificially degraded RNA from cell lines as well as naturally degraded RNA from tissue samples to quantify the effect RNA degradation has on fusion detection when using poly-A selected RNA libraries We found that both the RNA degradation level and the distance from the 3’ end of a gene, negatively impact the read coverage profile in RNA-seq. Furthermore, the median transcript coverage decreases exponentially as a function of the distance from the 3’ end and there is a linear relationship between the coverage decay rate and the RNA integrity number (RIN). Conclusions: we found that when using poly-A pulldown techniques for library preparation in RNA-seq, the fusion sensitivity is negatively impacted by both sample degradation and distance of the fusion breakpoint from the 3’ end and developed graphs that show such effect. Such graphs can be useful in assessing the fusion sensitivity of RNA-seq in both research and clinical settings Overall design: Sequencing data was generated using Hiseq 2500 with a library of 101 paired end reads in the rapid run mode
Impact of RNA degradation on fusion detection by RNA-seq.
Disease, Subject
View SamplesWe used microarrays to detail the global programme of gene expression underlying CS1-regulated biological processes including increased cell adhesion and cell proliferation.
CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells.
No sample metadata fields
View Samples