The Microarray study was designed to characterize the whole genome transcription profile of two subpopulations of H1 human embryonic stem cells we identified by size using flow cytometry.The heterogeneous nature of stem cells is an important issue in both research and therapeutic use in terms of directing cell lineage differentiation pathways, as well as self-renewal properties. Using flow cytometry we have identified two distinct subpopulations by size within the H1 and BGN1 human embryonic stem (hES) cell lines. Both populations express stem the cell markers Oct-4, Nanog, Tra-1-60, Tra-1-80 and SSea-4 and express very low levels of differentiation markers common to the three germ layers. To investigate if the two populations possessed different transcription profiles, we performed whole genome microarray analysis, and identified approximately 400 genes with significant differential expression (p<0.01). Cloning experiments indicate that both populations are able to repopulate each other and maintain the parental population. The large cell population responds to retinoic acid (RA) differentiation as evidenced by greater than a 50% loss of gated cell number and loss of Oct-4 expression; while the small cell population number does not change and maintains Oct-4 protein expression. The presence of these two populations could be vitally important with respect to stem cell therapy and research as they respond differently to differentiation signals, which may be important in directing stem cell differentiation for disease therapy.
Differential responses to retinoic acid and endocrine disruptor compounds of subpopulations within human embryonic stem cell lines.
Specimen part, Disease, Cell line
View SamplesWe report the application of RNA-sequencing technology for high-throughput profiling of RNA abundance in Drosophila melanogaster brains. By obtaining RNA-sequencing reads, we generated quantitative transcriptome-wide measures in three nutritional states: sated, fasted, refed. Overall design: RNA sequencing of wild-type Drosophila melanogaster brains in sated, fasted, or refed nutritional states
Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster.
Sex, Specimen part, Cell line, Subject
View SamplesAims: We investigate sex differences and the role of oestrogen receptor beta (ERbeta) in a mouse model of pressure overload-induced myocardial hypertrophy. Methods and results: We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta-/-) C57Bl6 mice. All mice were characterised by echocardiography and haemodynamic measurements and were sacrificed nine weeks after surgery. Left ventricular (LV) samples were analysed by microarray profiling, real-time RT-PCR and histology. After nine weeks, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. These sex differences were abolished in ERbeta-/- mice. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that male WT hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than female hearts. ERbeta-/- mice exhibited a different transcriptome. Induction of pro-apoptotic genes after TAC occurred in ERbeta-/- mice of both sexes with a stronger expression in ERbeta-/- males. Histological analysis revealed, that cardiac fibrosis was more pronounced in male WT TAC than in female mice. This was abolished in ERbeta-/- mice. Apoptosis was significantly induced in both sexes of ERbeta-/- TAC mice, but it was most prominent in males. Conclusion: Female sex offers protection against ventricular chamber dilation in the TAC model. Both the female sex and ERbeta attenuate the development of fibrosis and apoptosis; thus slowing the progression to heart failure.
Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.
Sex, Age, Specimen part
View SamplesWe analyzed via microarray gene expression profiles in de-identified, clinically annotated samples from Ficoll-purified peripheral blood samples from 10 acute myeloid leukemia (AML) patients in remission and 10 healthy donors collected under IRB-approved protocols.
Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.
Sex, Specimen part, Disease, Disease stage, Subject
View SamplesThe liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs). Controversy exists regarding the cellular origin of human liver parenchymal tissue generation during embryonic development, homeostasis or repair. Here we report the existence of a hepatobiliary hybrid progenitor (HHyP) population in human fetal liver using single-cell RNA sequencing. HHyPs are anatomically restricted to the ductal plate of fetal liver and maintain a unique transcriptional profile distinct from fetal hepatocytes, mature hepatocytes and mature BECs. In addition, molecular heterogenicity within the EpCAM+ population of freshly isolated fetal and adult human liver reveals diverse gene expression signatures of hepatic and biliary lineage potential. Finally, we FACS isolated fetal HHyPs and confirmed their hybrid progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells previously identified in mice also exist in humans, and can be distinguished from other parenchymal populations, including mature BECs, by distinct gene expression profiles. Overall design: Primary samples from 5 2nd trimester human fetal livers and 3 uninjured adult human livers for single cell RNA sequencing by Smartseq2.
Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors.
No sample metadata fields
View SamplesThe goals of this study were to identify LIN28 downstream gene targets in breast cancer cells. We use a subclone of the MCF-7 breast cancer cell line, MCF-7M as our model system. Methods: mRNA-protein complexes (mRNP) lysates were prepared from MCF-7M cells and incubated with Protein-A Sepharose beads (Sigma-Aldrich) and either LIN28 (Abcam) or control normal rabbit serum IgG antibodies. LIN28 interacting mRNAs were identified by whole genome sequencing. Results: Using an optimized data analysis workflow, we mapped approximately 13 million sequence reads for LIN28-IP and CTL- IP (IgG), respectively to the to the human genome (build h19). Conclusions: mRNA were significantly bound by LIN28 if LIN28 RIP had 2.5 fold increase in normalized reads compared to IgG. We found that LIN28 was predominantly bound at coding exons and 3''UTRs, 38% & 45% respectively, in the 843 mRNAs within MCF-7M genome. Overall design: LIN28 mRNA enriched regions identified from LIN28/RNA complexes prepared from MCF-7M cells.
LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional programme controlled by Runx1 during early embryonic blood development.
Specimen part, Cell line
View SamplesTranscription factors have long been recognised as powerful regulators of mammalian development, yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches across four ES-cell-derived populations of increasing haematopoietic potential to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that core regulatory circuits are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both early and late circuits in fully specified blood cells, but initiation of CD41 expression critically depends on a later subcircuit driven by Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulatory circuits is likely to represent a design principle widely applicable to the transcriptional control of mammalian development.
The transcriptional programme controlled by Runx1 during early embryonic blood development.
Specimen part, Cell line
View SamplesThe adenosine 2A receptor (A2AR) is expressed on regulatory T cells (Tregs), but the functional significance is currently unknown. We compared the gene expression between wild-type (WT) and A2AR knockout (KO) Tregs and between WT Tregs treated with vehicle or a selective A2AR agonist.
Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection.
Specimen part
View SamplesTo explore the global mechanisms of estrogen-regulated transcription, we used chromatin immunoprecipitation coupled with DNA microarrays to determine the localization of RNA polymerase II (Pol II), estrogen receptor alpha (ERalpha), steroid receptor coactivator proteins (SRC), and acetylated histones H3/H4 (AcH) at estrogen-regulated promoters in MCF-7 cells with or without estradiol (E2) treatment. In addition, we correlated factor occupancy with gene expression and the presence of transcription factor binding elements. Using this integrative approach, we defined a set of 58 direct E2 target genes based on E2-regulated Pol II occupancy and classified their promoters based on factor binding, histone modification, and transcriptional output. Many of these direct E2 target genes exhibit interesting modes of regulation and biological activities, some of which may be relevant to the onset and proliferation of breast cancers. Our studies indicate that about one-third of these direct E2 target genes contain promoter-proximal ERalpha-binding sites, which is considerably more than previous estimates. Some of these genes represent possible novel targets for regulation through the ERalpha/AP-1 tethering pathway. Our studies have also revealed several previously uncharacterized global features of E2-regulated gene expression, including strong positive correlations between Pol II occupancy and AcH levels, as well as between the E2-dependent recruitment of ERalpha and SRC at the promoters of E2-stimulated genes. Furthermore, our studies have revealed new mechanistic insights into E2-regulated gene expression, including the absence of SRC binding at E2-repressed genes and the presence of constitutively bound, promoter-proximally paused Pol IIs at some E2-regulated promoters. These mechanistic insights are likely to be relevant for understanding gene regulation by a wide variety of nuclear receptors.
Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters.
No sample metadata fields
View Samples