Mammalian genomes are organized into megabase-scale topologically associated domains (TADs) that have been proposed to represent large regulatory units. Here we demonstrate that disruption of TADs can cause rewiring of long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. Overall design: RNA-seq profile of developing distal limbs of mutants and WT animals at E11.5
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.
No sample metadata fields
View SamplesAffymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically well characterized adenocarcinomas of the lung. In addition, EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry.
Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study.
Specimen part
View SamplesEarly innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing
Development and differentiation of early innate lymphoid progenitors.
Specimen part, Cell line, Subject
View SamplesGene expression profiling was performed to identify INSL4-regulated gene program in non-small cell lung cancer A549 cells. We compared gene expression profiles of A549 cells transduced with lentiviruses expressing scrambled shRNA control or INSL4 shRNA. Our analysis revealed INSL4-regulated gene program that are involved in the regulation of cell cycle, growth and survival.
Role of INSL4 Signaling in Sustaining the Growth and Viability of LKB1-Inactivated Lung Cancer.
Cell line
View SamplesGene expression profiling was performed on control and long intergenic non-protein coding RNA 473 (LINC00473)-depleted human mucoepidermoid carcinoma H3118 cells, and differentially expressed genes after LINC00473 depletion were identified.
CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells.
Specimen part, Cell line
View SamplesNeuronal migration defects (NMDs) are among the most common and severe brain abnormalities in humans. Lack of disease models in mice or in human cells has hampered the identification of underlying mechanisms. From patients with severe NMDs we generated iPSCs then differentiated neural progenitor cells (NPCs). On artificial extracellular matrix, patient-derived neuronal cells showed defective migration and impaired neurite outgrowth. From a cohort of 107 families with NMDs, sequencing identified two homozygous C-terminal truncating mutations in CTNNA2, encoding aN-catenin, one of three paralogues of the a-catenin family, involved in epithelial integrity and cell polarity. Patient-derived or CRISPR-targeted CTNNA2- mutant neuronal cells showed defective migration and neurite stability. Recombinant aN-catenin was sufficient to bundle purified actin and to suppress the actin-branching activity of ARP2/3. Small molecule inhibitors of ARP2/3 rescued the CTNNA2 neurite defect. Thus, disease modeling in human cells could be used to understand NMD pathogenesis and develop treatments for associated disorders. Overall design: 2 biological replicates per individual (2 iPSC clone differentiations), excluding 1263A, which has one sample
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.
No sample metadata fields
View SamplesILC210 represent a distinct effector population of ILC2 cells that have regulatory potential Overall design: comparison between ILC2 cells with IL-33 stimulation or not on transcriptome change
Alternative activation generates IL-10 producing type 2 innate lymphoid cells.
Specimen part, Subject
View SamplesSubtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification. Overall design: TOX KO vs. wild tyype
The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.
No sample metadata fields
View SamplesAcute myeloid leukemia (AML) is characterized by molecular heterogeneity. As commonly altered genomic regions point to candidate genes involved in leukemogenesis, we used microarray-based comparative genomic hybridization and single nucleotide polymorphism profiling data of 391 AML cases to further narrow down genomic regions of interest. Targeted-resequencing of 1000 genes located in the critical regions was performed in a representative cohort of 50 AML samples comprising all major cytogenetic subgroups. We identified 120 missense/nonsense mutations as well as 60 insertions/deletions affecting 73 different genes (~3.6 tumor-specific aberrations/AML). While most of the newly identified alterations were non-recurrent, we observed a number of mutations affecting genes involved in epigenetic regulation including known candidates like TET2, TET1, DNMT3A and DNMT1, as well as mutations in the histone methyltransferases NSD1, EZH2 and MLL3. Furthermore, we found mutations in the splicing factor SFPQ and in the non-classical regulators of mRNA-processing CTCF and RAD21. These splicing-related mutations affected 10% of AML patients in a mutually exclusive manner. In conclusion, we could identify a significant enrichment of alterations in genes involved in aberrant splicing and epigenetic regulation in genomic regions commonly altered in AML, highlighting their important role in the molecular pathogenesis of AML.
Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.
Sex, Specimen part, Time
View Samples