refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 320 results
Sort by

Filters

Technology

Platform

accession-icon GSE30691
Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1
  • organism-icon Rattus norvegicus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury.

Publication Title

Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1.

Sample Metadata Fields

Age

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP062287
Research resource: global identification of estrogen receptor ß target genes in triple negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The goal of this work was to identify all estrogen receptor beta target genes using RNA sequencing in MDA-MB-468 triple negative breast cancer cells engineered with inducible expression of full length estrogen receptor beta. Overall design: MDA-MB-468 breast cancer cells with inducible ERb expression (MDA-468-ERb cells) were treated in triplicate with vehicle (control, no ERb) or doxycycline (plus ERb) for 48 hr prior to treatment with 0.1% DMSO vehicle or 10 nM 17b-estradiol for 4 hr.

Publication Title

Research resource: global identification of estrogen receptor β target genes in triple negative breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18829
Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.

Publication Title

Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18870
Analysis of global gene expression in uninduced and -estradiol treated G1E-ER-GATA cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Total RNA was analyzed from either uninduced or -estradiol treated G1E-ER-GATA cells to determine changes in gene expression upon induction of erythroid maturation (treated).

Publication Title

Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP058058
Gene expression changes in control- and shSamd14-infected R1 fetal liver
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Samd14 was discovered as a novel GATA-2 target gene. Samd14 increased hematopoietic progenitor levels/activity, promoted signaling by a pathway instrumental for hematopoietic stem/progenitor cell regulation (Stem Cell Factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes Overall design: A control shRNA or an shRNA targeting Samd14 was retrovirally introduced to fetal liver ex vivo cultures. Progenitor cells (CD71-, Ter119-) were isolated and analyzed from these cultures

Publication Title

Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27859
Inflammation switches the differentiation program of Ly6Chi monocytes from anti-inflammatory macrophages to inflammatory dendritic cells in the colon
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80hi CX3CR1hi (CD11b+CD103-) cells account for 80% of mouse colonic lamina propria (cLP) MHC-IIhi cells. Both CD11c+ and CD11c- cells within this population were identified as MPs based on multiple criteria, including a MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs, based on phenotypic and functional analysis and comprise three separate CD11chi cell populations: CD103+CX3CR1-CD11b- DCs, CD103+CX3CR1-CD11b+ DCs and CD103-CX3CR1intCD11b+ DCs. In non-inflammatory conditions, Ly6Chi monocytes differentiated primarily into CD11c+, but not CD11c- MPs. In contrast, during colitis, Ly6Chi monocytes massively invaded the colon and differentiated into pro-inflammatory CD103-CX3CR1intCD11b+ DCs, which produced high levels of IL-12, IL-23, iNOS and TNF. These findings demonstrate the dual capacity of Ly6Chi blood monocytes to differentiate into either regulatory MPs or inflammatory DCs in the colon, and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.

Publication Title

Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84894
Expression data from starved first larval stage of wildtype and hyl-1(ok976); lagr-1(gk327) C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Our understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.

Publication Title

Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26982
Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP166172
Effect of high-fat diet on hepatic gene expression in SM/J mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We identified 4,356 genes with expression differences associated with a high-fat diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, such as cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Grant: Funding source: American Heart Association Grant number: 16PRE26420105 Title: The effect of maternal over-nutrition on obesity, epigenetics, and gene expression Awarded to Madeline Keleher Overall design: We performed RNA-seq in 21 total libraries, each with two mice of the same sex and diet pooled together (There were 6 low-fat-fed female libraries, 5 libraries of high-fat-fed females, 5 libraries of low-fat-fed males, and 5 libraries of high-fat-fed males). A 1x50 single read sequencing run was done on an Illumina HiSeq 2500 machine (Illumina Inc.)

Publication Title

A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact