By employing FOXA2-deficient mouse models coupled with LIF repletion, we reveal definitive roles of uterine glands in pregnancy establishment.These studies provide original evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. Overall design: Uterine transcriptomes of control and Foxa2-deficient mice were generated on gestational day (GD) 4 and GD 6 following LIF-repletion. All time points were done in quadruplicates.
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.
Specimen part, Cell line, Subject
View SamplesDifferential gene expression analysis of oesophageal cells stimulated with a low pH environment. Study designed to identify pathways involved in progression of gastro-oesophageal reflux disease through Barrett's oesophagus to adenocarcinoma. Identified many subsets of genes with involvement in pathogenesis.
Low pH induces co-ordinate regulation of gene expression in oesophageal cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.
No sample metadata fields
View SamplesThe involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barretts metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisons with data derived from gene expression studies of Barretts esophagus and associated adenocarcinoma.
An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.
No sample metadata fields
View SamplesThe involvment of bile acids such as deoxycholic acid (DCA) in gastro-esophageal reflux disease and subsequent Barretts metaplsia has been postulated. This study examines gene expression induced by exposure to DCA in esophageal cells and may be utilised in cross-comparisions with data derived from gene expression studies of Barretts esophagus and associated adenocarcinoma. Additionally this study may be used to assess divergence in response to bile acids by comparisons with similar study performed in SKGT4 barrett''s assocaited adenocarcinoma cell line.
An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid responsive gene, downregulated in Barrett's oesophagus, which regulates NF-kappaB activation and cytokine levels.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide.
Specimen part, Cell line
View SamplesThis study set out to identify global changes in gene expression in human embryonic kidney (HEK) cells stably transfected with Toll-like receptor 2 (TLR2) over a 48 hour time-course, following stimulation with 10 g/ml lipopolysaccharide (LPS) from the gastric pathogen H. pylori.
Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide.
Specimen part
View SamplesThis study set out to identify global changes in gene expression in AGS gastric epithelial cells following 8 hours stimulation with 10 g/ml lipopolysaccharide (LPS) from the gastric pathogen H. pylori.
Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide.
Specimen part, Cell line
View SamplesThis study set out to identify global changes in gene expression in MKN45 gastric epithelial cells following 8 hours stimulation with 10 g/ml lipopolysaccharide (LPS) from the gastric pathogen H. pylori.
Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide.
Specimen part, Cell line
View SamplesThis study utilise the examination of normal gastro-intestinal tissues to determine a tissue specific signal for use in deriving the intestinal signature of intestinal metaplasias of the oesophagus. Normal oesophageal, colonic and duodenal tissue biopsies were taken after informed consent and RNA was extracted following histological examination of adjacent tissues for normal aperaing mucosa.
The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival.
Specimen part
View Samples