The goal of this study was to compare mRNA from mammary epithelial cells of 3 mammary-specific Nmi knockout FVB with corresponding wildtype control. This was performed to obtain clues to the signaling pathways that were impacted in the mammary epithelial cells upon knocking-out Nmi expression. Overall design: To determine how the loss of Nmi contributed to a hyper-proliferative phenotype during puberty and lactation, we performed global RNAseq analysis from enriched mammary epithelial organoids from lactation day1 (L1), the time when Nmi protein expression in normal mammary epithelium is at its highest level. We compared 2 groups with 3 mice/group. We used second and third mammary glands of each mouse. These glands were isolated from mice on the first day of lactation, minced and dissociated in digestion medium (HBSS containing collagenase I (Sigma Aldrich, St. Louis, MO) (1mg/mL) and Pronase (Sigma Aldrich) (0.1mg/mL)) for two hours at 37C with shaking. Epithelial organoids were washed in PBS and enriched by pulse centrifugation to 1500rpm at least three times before subsequent assays.
Conditional knockout of N-Myc and STAT interactor disrupts normal mammary development and enhances metastatic ability of mammary tumors.
Specimen part, Subject
View SamplesSubjects with incidental Lewy body disease (iLBD) may represent the premotor stage of Parkinsons disease (PD). To identify molecular mechanisms underlying neuronal dysfunction and alpha--synuclein pathology in the premotor phase of PD, we investigated the transcriptome of post-mortem substantia nigra (SN) of iLBD, PD donors and age-matched controls with Braak alpha--synuclein stage ranging from 0-6. In Braak alpha--synuclein stages 1 and 2, we observed deregulation of pathways linked to axonal degeneration, unfolded protein response (UPR), immune response and endocytosis, including axonal guidance signaling, protein kinase A signaling, mTOR signaling, EIF2 signaling and clathrin-mediated endocytosis. In Braak stages 3 and 4, we observed a deregulation in pathways involved in protein translation and cell survival, including mTOR and EIF2 signaling. In Braak stages 5 and 6, we observed deregulation of pathways such as dopaminergic signaling, axonal guidance signaling and thrombin signaling. Throughout the progression of PD pathology, we observed a deregulation of mTOR, EIF2 and regulation of eIF4 and p70S6K signaling in the SN. This implicates that molecular mechanisms related to UPR, axonal dysfunction, endocytosis and immune response are an early event in PD pathology, and may hold the key to altering the disease progression in PD.
Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease.
Specimen part, Disease, Disease stage
View SamplesRibosome Profiling was employed to learn about Ribosome A-site occupancies in response to uL11 siRNA treatment or scrambled siRNA treatment in Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Overall design: Ribosome Profiling of cells 96h after siRNA transfection
Slowing ribosome velocity restores folding and function of mutant CFTR.
Specimen part, Subject
View SamplesUnderstanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating sub-populations of cells are based on mRNA or protein expression of only few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumor cells is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbor stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. Reassuringly, RaceID confirmed the existence of known enteroendocrine lineages, and moreover, discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID by this proof-of-principle experiment we then apply the algorithm to ex vivo isolated LGR5 positive cells and their direct progeny and demonstrate homogeneity of the stem cell pool. We envision broad applicability of our method for discovering rare cell types and the corresponding marker genes in healthy and diseased organs. Overall design: Small intestinal crypts were isolated from a single wild-type C57BL/6 mouse, a Reg4-dsRed-knock-in mouse and an Lgr5-GFP-DTR mouse. The crypts were propagated and expanded in culture as organoids. For each experiment, multiple organoids were harvested and dissociated into single cells. Each experiment was done twice, using different passage of the same organoid culture. We also included a pool-and-split control for 96 Reg4-dsRed positive intetsinal cells and a control library with 5 mouse embryonic stem cells (wells 1-5), 5 mouse embryonic fibroblasts (wells 6-10), 75 random organoid cells (wells 11-85), 5 wells without primer and without template (wells 86 and 93-96), and five wells with primer and without template (wells 87-92). We also sequenced two 96 well plates of Lgr5-EGFP positive single cells isolated ex vivo, and Lgr5 progeny collected after five days of lineage tracing. Label induction was performed using an Lgr5-Cre reporter mouse expressing YFP from Rosa26 promoter with a loxP flanked transcriptional road block in between. Five 96 well plates of YFP positive were sequenced. Sample number four also contains also unrelated samples (single cell barcode 49-96), which should be discarded.
Single-cell messenger RNA sequencing reveals rare intestinal cell types.
No sample metadata fields
View SamplesVolunteers were assessed at study entry, the day of the third vaccination and 24, 72 hours, two weeks after vaccination, and 5 days after challenge. 13/39 vaccinees were protected and 26/39 were not protected. Eleven vaccinees exhibited delayed onset of parasitemia. All infectivity controls developed parasitemia. Prediction Analysis of Microarrays (PAM-R) identified genes corresponding with protection. Gene Set Enrichment Analysis (GSEA) identified sets of genes associated with protection after the third immunization, before challenge.
Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine.
Specimen part
View SamplesWe present single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11. Our study reveals the transcriptional dynamics occuring during endothelial to hematopoietic transition, the process responsible for the production of hematopoietic stem cells. Overall design: single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11
Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta.
Specimen part, Cell line, Subject
View SamplesMycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is a malignancy of mature, skin-homing T cells. Szary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based CGH; simultaneously gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include copy number gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. This pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that presence of chromosomal alterations on 9p21, 8q24 and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these CTCLs may be distinct.
Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome.
Specimen part
View SamplesIn this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.
Specimen part, Subject
View SamplesCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T-cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. In this study, we performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN- to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlation between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Integrated Whole Genome and Transcriptome Analysis Identified a Therapeutic Minor Histocompatibility Antigen in a Splice Variant of ITGB2.
Specimen part, Cell line
View SamplesGene expression profiles from ALDH high cells sorted from expanded adult human pancreatic organoids are more similar to fetal pancreatic tissue and ALDH high cells sorted from expanded fetal human pancreatic organoids than to adult human islets or adult islet-depleted exocrine tissue. Overall design: RNA was isolated from ALDHhi cells sorted from organoids after 7 days expansion derived from human adult pancreatic tissue, ALDHhi cells sorted from organoids after 7 days expansion derived from human fetal pancreatic tissue, primary fetal pancreatic tissue, adult human islets from different donors and adult exocrine (islet-depleted) pancreatic tissue from different donors.
Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential.
Specimen part, Subject
View Samples