We found that hyperglycemia and elevated fatty acids in diabetes could activate protein kinase C- isoforms and selectively induce insulin resistance via inhibiting vascular insulin signaling.
Insulin decreases atherosclerosis by inducing endothelin receptor B expression.
Age, Specimen part, Disease, Disease stage, Treatment
View SamplesUnearthing of silenced genes in colorectal cancer (CRC) is of great importance. We employed oligonucleotide microarray to find changes in global gene expression of five CRC cell lines. These were analyzed before and after treatment with the 5-aza-2'-Deoxycitidine. Expression of the responding genes was integrated with gene expression profiling generated by microarray analysis of matched colorectal tissue samples. Selected candidates were subjected to methylation-specific PCR (MSP) and real-time quantitative reverse transcription-PCR using CRC cell lines and paired tumor and normal samples from CRC patients. Sixty eight genes were re-expressed after 5-aza-2'-Deoxycitidine treatment and over-expressed in normal colorectal mucosa, including genes that were known to be methylated in CRC. After applying study selection criteria, we identified 16 potential genes. Two candidates were selected (ASPP1 and SCARA5). Among 15 CRC cell lines, methylation was identified in SCARA5 (20%). The methylation status of SCARA5 was subsequently investigated in 23 paired colorectal tissue samples; methylation was detected in 17%, respectively. Observed promoter methylation showed a tendency towards methylation in tumor-derived samples, in SCARA5 gene. Significant down expression of SCARA5 mRNA was observed in CRC cell lines and tumor tissues compared to adjacent normal tissues (P < 0.001 and P = 0.001, respectively). The use of genome-wide screening led to the identification of a group of candidate genes. Among them, SCARA5 was methylated and markedly down-regulated in CRC. SCARA5 gene may have a role in CRC tumorigenesis.
Screening for epigenetically masked genes in colorectal cancer Using 5-Aza-2'-deoxycytidine, microarray and gene expression profile.
Specimen part
View SamplesOne and four month formalin-fixed paraffin embedded biopsies from 48 kidney transplant recipients (24 AKI donors, 24 non-AKI) underwent global gene expression profiling using DNA microarrays (96 arrays). At one month, there were 898 differentially expressed genes in the AKI group (p-value <0.005; FDR <10%), but by 4-months there were no longer any differences.
Transplanting Kidneys from Deceased Donors With Severe Acute Kidney Injury.
No sample metadata fields
View SamplesThis study provides a comprehensive evaluation of changes in gene expression during treatment with Genistein in vitro.
Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.
Treatment
View SamplesWe have determined the gene expression profile induced by 17 alpha-ethynyl estradiol (EE) in Ishikawa cells, a human uterine-derived estrogen-sensitive cell line, at various doses (1 pM, 100 pM, 10 nM, and 1 microM) and time points (8, 24, and 48 h). The transcript profiles were compared between treatment groups and controls (vehicle-treated) using high-density oligonucleotide arrays to determine the expression level of approximately 38,500 human genes. By trend analysis, we determined that the expression of 2560 genes was modified by exposure to EE in a dose- and time-dependent manner (p </= 0.0001). The annotation available for the genes affected indicates that EE exposure results in changes in multiple molecular pathways affecting various biological processes, particularly associated with development, morphogenesis, organogenesis, cell proliferation, cell organization, and biogenesis. All of these processes are also affected by estrogen exposure in the uterus of the rat. Comparison of the response to EE in both the rat uterus and the Ishikawa cells showed that 71 genes are regulated in a similar manner in vivo as well as in vitro. Further, some of the genes that show a robust response to estrogen exposure in Ishikawa cells are well known to be estrogen responsive, in various in vivo studies, such as PGR, MMP7, IGFBP3, IGFBP5, SOX4, MYC, EGR1, FOS, CKB, and CCND2, among others. These results indicate that transcript profiling can serve as a viable tool to select reliable in vitro systems to evaluate potential estrogenic activities of target chemicals and to identify genes that are relevant for the estrogen response.
The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol.
No sample metadata fields
View SamplesThis study provides a comprehensive evaluation of changes in gene expression during treatment with Bisphenol A in vitro.
The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent.
Cell line, Treatment
View SamplesFOXE3 is a lens specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, we have identified DNAJB1 as a transcriptional target of FOXE3 in a novel pathway that is crucial for development of the anterior segment of the eye. Overall design: Human Embryonic Kidney (HEK293FT) cells were transfected with the expression vector (pT-RexTM-DEST30) harboring either the wild type or the mutant (C240*) FOXE3 ORF (open reading frame). The experimental design included a total of eight biological replicates of cells expressing the wild type and eight replicates of mutant FOXE3 along with eight non-transfected controls. Cells were harvested 24-hour post-transfection and subjected to total RNA isolation for the preparation of whole transcriptome next-generation sequencing libraries. Initially, we examined the quality of transcriptome libraries on a MiSeq genome analyzer. Subsequent to confirmation of the quality, all libraries were paired-end sequenced (2 x 100 bp) using Illumina TruSeq Cluster V3 flow cell at a concentration of 13.0 pM in two separate lanes (12 bar-coded mRNA pooled libraries in each lane) on a HiSeq 2000 genome analyzer.
FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1.
No sample metadata fields
View SamplesThe rat uterus responds to acute estrogen treatment with a series of well characterized physiological responses; however, the gene expression changes required to elicit these responses have not been fully characterized. In order to understand early events induced by estrogen exposure in vivo, we evaluated the temporal gene expression in the uterus of the immature rat after a single dose of 17 Alpha-ethynyl estradiol (EE) by microarray analysis, evaluating the expression of 15,923 genes. Immature 20 day old rats were exposed to a single dose of EE (10 ug/kg) and the effect on uterine histology, weight and gene expression were determined after 1, 2, 8, 24, 48, 72 and 96 h. EE induced changes in the expression of 3,867 genes, at least at one time point (p¡Ü0.0001), and at least 1.5 fold (up- or down-regulated). Specifically, the expression of 8, 116, 3030, 2076, 381, 445, and 125 genes was modified at 1, 2, 8, 24, 48, 72 or 96 hours after exposure to EE respectively (p¡Ü0.0001, t Test). At the tissue and organ level, a clear uterotrophic response was elicited by EE after only 8 h, reaching a maximum after 24 h and remaining detectable even after 96 h of exposure. The uterine phenotypic changes were induced by sequential changes in the transcriptional status of a large number of genes, in a program that involves multiple molecular pathways. Using the gene ontology to better understand the temporal response to estrogen exposure, we determined that the earliest changes were in the expression of genes whose products are involved in transcriptional regulation and signal transduction, followed by genes implicated in protein synthesis, energy utilization, solute transport, cell proliferation and differentiation, tissue remodeling and immunological responses among other pathways. The compendium of genes here presented represents a comprehensive compilation of estrogen-responsive genes involved in the uterotrophic response.
Uterine temporal response to acute exposure to 17alpha-ethinyl estradiol in the immature rat.
Sex, Age, Specimen part, Compound, Time
View SamplesTotal RNA was isolated from HuH-7 cells after transfection of IGF-II specific siRNAs. Gene expression profiling was performed using the Affymetrix Human Genome U133A 2.0 Arrays. The raw data were analysed using mixed model ANOVA.
Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis.
No sample metadata fields
View SamplesTo better understand the mechanistic basis of aging and its relationship with retinal degeneration, we examined gene expression changes in aging rod photoreceptors. Rod photoreceptor cell death is a feature of normal retinal aging and is accelerated in many retinal degenerative diseases, including AMD, the leading cause of untreatable adult blindness in the United States and other western countries. To our knowledge, the examination of age-related gene expression changes in a specific neuronal cell-type is novel, and it has allowed us to identify significant age-related changes with better resolution than is possible with whole retina samples. We used flow cytometry and a transgenic mouse with GFP-tagged rod photoreceptors to purify this specific cell population, and gene expression changes were evaluated at three time points using microarrays and quantitative RT-PCR. Our results suggest that aging is progressive, beginning even in young adult mice. Although rod photoreceptors are highly specialized neurons, our analyses revealed changes in consensus pathways of aging, including oxidative phosphorylation and stress responses affecting transcription and inflammation. In addition, we identified stress response processes that may be especially relevant for the aging retina and retinal diseases, such as angiogenesis and nuclear receptor signaling pathways that affect retinoid and lipid metabolism.
Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases.
Age, Specimen part
View Samples