To investigate the role of the transcriptional repressor Rev-erb alpha in epididymal white adipose tissue, we performed a microarray analysis of gene expression in the epididymal white adipose tissue of wildtype and Rev-erb alpha knock-out mice.
The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling.
Sex, Specimen part
View SamplesThis study provides a comprehensive evaluation of changes in gene expression during treatment with Genistein in vitro.
Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.
Treatment
View SamplesMSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males in order to equalize expression of X-linked genes between males (XY) and females (XX). The increase in transcript levels correlates with MSL- dependent acetylation of histone H4 at K16 within the bodies of active genes, but identification of the transcriptional step affected has not been possible. In this study, we use global run-on sequencing (GRO-seq) to examine the specific effect of MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific control may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome. Overall design: Global Run-On Sequencing (GRO-Seq) reads, i.e., RNA-Seq of nascent RNA transcripts, from D. Melanogaster SL2 cells. Two biological replicates of cells treated with control GFP RNAi and cells treated with MSL2 RNAi were analyzed.
X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila.
Subject
View SamplesFOXE3 is a lens specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, we have identified DNAJB1 as a transcriptional target of FOXE3 in a novel pathway that is crucial for development of the anterior segment of the eye. Overall design: Human Embryonic Kidney (HEK293FT) cells were transfected with the expression vector (pT-RexTM-DEST30) harboring either the wild type or the mutant (C240*) FOXE3 ORF (open reading frame). The experimental design included a total of eight biological replicates of cells expressing the wild type and eight replicates of mutant FOXE3 along with eight non-transfected controls. Cells were harvested 24-hour post-transfection and subjected to total RNA isolation for the preparation of whole transcriptome next-generation sequencing libraries. Initially, we examined the quality of transcriptome libraries on a MiSeq genome analyzer. Subsequent to confirmation of the quality, all libraries were paired-end sequenced (2 x 100 bp) using Illumina TruSeq Cluster V3 flow cell at a concentration of 13.0 pM in two separate lanes (12 bar-coded mRNA pooled libraries in each lane) on a HiSeq 2000 genome analyzer.
FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1.
No sample metadata fields
View SamplesWe have determined the gene expression profile induced by 17 alpha-ethynyl estradiol (EE) in Ishikawa cells, a human uterine-derived estrogen-sensitive cell line, at various doses (1 pM, 100 pM, 10 nM, and 1 microM) and time points (8, 24, and 48 h). The transcript profiles were compared between treatment groups and controls (vehicle-treated) using high-density oligonucleotide arrays to determine the expression level of approximately 38,500 human genes. By trend analysis, we determined that the expression of 2560 genes was modified by exposure to EE in a dose- and time-dependent manner (p </= 0.0001). The annotation available for the genes affected indicates that EE exposure results in changes in multiple molecular pathways affecting various biological processes, particularly associated with development, morphogenesis, organogenesis, cell proliferation, cell organization, and biogenesis. All of these processes are also affected by estrogen exposure in the uterus of the rat. Comparison of the response to EE in both the rat uterus and the Ishikawa cells showed that 71 genes are regulated in a similar manner in vivo as well as in vitro. Further, some of the genes that show a robust response to estrogen exposure in Ishikawa cells are well known to be estrogen responsive, in various in vivo studies, such as PGR, MMP7, IGFBP3, IGFBP5, SOX4, MYC, EGR1, FOS, CKB, and CCND2, among others. These results indicate that transcript profiling can serve as a viable tool to select reliable in vitro systems to evaluate potential estrogenic activities of target chemicals and to identify genes that are relevant for the estrogen response.
The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol.
No sample metadata fields
View SamplesThis study provides a comprehensive evaluation of changes in gene expression during treatment with Bisphenol A in vitro.
The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent.
Cell line, Treatment
View SamplesNascent transcription profiles are shown for scaled megadomains and 100kb flanking regions before BRD4-NUT induction (0h) and at different time points (2h, 3h, 7h) following induction in 293T cells. Increase of the transcription from 0h to 7h after induction. Average level of transcriptional activity is reduced within the megadomains and their flanking regions following JQ1 treatment of TC-797 cells. Profile of nascent RNA-seq is shown for cells without JQ1 treatment, and for cells 1hr, 2.5hr and 4hr following JQ1 treatment. Overall design: Recovery and analysis of nascent RNA
The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains.
No sample metadata fields
View SamplesWe have performed a comprehensive transcriptional analysis of specific monocyte and macrophage (M) subsets during an acute self-resolving inflammatory insult. Following initial induction of acute inflammation, tissue resident (Resident) M are rapidly cleared from the inflammatory foci, only becoming recoverable as inflammation resolves. Monocytes are recruited to the inflammatory lesion where they differentiate into M. We term these monocyte-derived M inflammation-associated to distinguish them from Resident M which are present throughout the inflammatory response and can renew during the resolution of inflammation by proliferation. Comparative analysis of the Mo and M populations (both inflammation-associated and Resident M) identifies select genes expressed in subsets of inflammation-associated and Resident M that play important roles in the resolution of inflammation and/or for immunity, including molecules involved in antigen presentation, cell cycle and others associated with immaturity and M activation.
The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal.
Sex, Specimen part
View SamplesRecent studies demonstrated that tumor cells with stem cell-like properties can be cultured from human glioblastomas by using conditions that select for the expansion of neural stem cells. We established glioblastoma stem-like (GS-) cell cultures from 9 different glioblastomas, 8 of which generated stably expandable cell lines. Analyzing GS-cell cultures, we discovered two clearly discernable phenotypes.
Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria.
No sample metadata fields
View Samples