The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of mRNAs during the early stages of human liver development in comparison to post-natal livers.
Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development.
Specimen part
View SamplesInduced pluripotent stem cells (iPSCs) outwardly appear to be indistinguishable from embryonic stem cells (ESCs). A study of gene expression profiles of mouse and human ESCs and iPSCs suggests that, while iPSCs are quite similar to their embryonic counterparts, a recurrent gene expression signature appears in iPSCs regardless of their origin or the method by which they were generated. Upon extended culture, hiPSCs adopt a gene expression profile more similar to hESCs; however, they still retain a gene expression signature unique from hESCs that extends to miRNA expression. Genome-wide data suggested that the iPSC signature gene expression differences are due to differential promoter binding by the reprogramming factors. High-resolution array profiling demonstrated that there is no common specific subkaryotypic alteration that is required for reprogramming and that reprogramming does not lead to genomic instability. Together, these data suggest that iPSCs should be considered a unique subtype of pluripotent cell.
Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures.
Specimen part, Cell line
View Samples