refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1231 results
Sort by

Filters

Technology

Platform

accession-icon GSE23843
RIP-chip analysis of the C. elegans GLD-2 and RNP-8 protein
  • organism-icon Caenorhabditis elegans
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

C. elegans GLD-2 forms an active PAP with multiple RNA-binding partners to regulate diverse aspects of germline and early embryonic development. One GLD-2 partner, RNP-8, was previously shown to influence oocyte fate specification. To identify transcripts selectively associated with both GLD-2 and RNP-8, we employ a genomic approach using the method of RNA immunoprecipitation followed by microarray analysis (RIP-chip).

Publication Title

GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE19922
RIP-chip analysis of the C. elegans PUF protein FBF
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

The PUF family of RNA binding proteins has a conserved role in maintaining stem cell self-renewal. FBF is a C. elegans PUF that is required to maintain germline stem cells (GSCs). To understand how FBF controls GSCs, we sought to identify is target mRNAs. Briefly, we immunoprecipitated FBF-mRNA complexes from worm extracts and then used microarrays to identify the FBF-associated mRNAs. To focus on germline targets of FBF, we used a FBF-GFP transgene under the control of a germline promoter and we used an anti-GFP antibody to purify FBF-GFP from worm extracts. In parallel, we also processed a strain expressing TUBULIN-GFP in the germline to control for mRNAs that non-specifically co-purify with GFP. We found that FBF associates with >1,000 unique mRNAs and likely controls a broad network of key cellular and developmental regulators.

Publication Title

Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73070
RIP-Chip analysis of the C. elegans FOG-1 and FOG-3 proteins
  • organism-icon Caenorhabditis elegans
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

FOG-1/CPEB and FOG-3/Tob are the terminal regulators of the sex determination in C. elegans germ cells. CPEB and Tob proteins are both translational regulators. To investigate how FOG-1 and FOG-3 regulate germ cell sex determination we sought to identify the target mRNAs. We used transgenic epitope tagged animals (3xMyc::FOG-1 and FOG-3::3xFLAG). To identify the mRNA targets of FOG-1/CPEB and FOG-3/Tob on a genome wide scale we used RNA immunoprecipitation followed by microarray analysis. We found 81 putative mRNA targets of FOG-1 and 722 putative targets of FOG-3. 76 target mRNAs were common to both FOG-1 and FOG-3.

Publication Title

Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP035359
Competence for reprogramming sex
  • organism-icon Caenorhabditis elegans
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We used RNA-Seq to compare transcriptomes of chemical reprogramming competent worms versus worms not competent for chemical reprogramming. We also performed RNA-seq during a time course of chemical reprogramming. Overall design: Three replicates of each of two reprogramming non-competent strains and three replicates of each of two reprogramming competent strains were collected. For the time course, five time points were analyzed (1, 2, 4, 6, and 18 hours) in either DMSO or DMSO + U0126 in three genotypes (non-reprogramming competent worms, reprogramming competent, and wildtype worms).

Publication Title

Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP041461
A new dataset of spermatogenic vs oogenic transcriptomes in the nematode C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nematode Caenorhabditis elegans is an important model for studies of germ cell biology, including specification as sperm or oocyte, the meiotic cell cycle and gamete differentiation. Fundamental to those studies is a genome-level knowledge of the germline transcriptome. Here we use RNA-Seq to identify genes expressed in isolated XX gonads, which are roughly 95% germline and 5% somatic gonadal tissue. We generate data from mutants making either sperm [fem-3(q96)] or oocytes (fog-2), both grown at 22°C. Our dataset identifies a total of 10,754 mRNAs in the polyadenylated transcriptome of XX gonads, with 1,723 enriched in spermatogenic gonads, 2,869 enriched in oogenic gonads and the remaining 6,274 not enriched in either. These spermatogenic, oogenic and gender-neutral gene datasets compare well with those of earlier studies, but double the number of genes identified. We also query our RNA-Seq data for differential exon usage and find 351 mRNAs with sex-specific isoforms. We suggest that this new dataset will prove useful for studies focusing on C. elegans germ cell biology. Overall design: Comparison of spermatogenic vs oogenic transcriptomes

Publication Title

A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE23388
DNA methylation and expression profiling study for prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Microarray-based DNA methylation and gene expression profiling was carried out using a panel of prostate cancer cell lines (LNCaP-FGC, DU-145, and PC-3) and the control normal prostate RWPE1 cell line. The identification of prostate cancer-specific methylation markers was based on the following criteria: a difference in DNA methylation level () of at least 0.5, and at least a 2-fold difference in expression level between cancer and control cells. Using highly stringent selection criteria, we identified novel hypermethylated genes whose expression was silenced in prostate cancer cells.

Publication Title

EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP073789
Gene expression profiling study by RNA-seq for identifying gene signatures associated with castration-refractory prostate cancer (CRPC) development.
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The objective of this study is to identify gene signature associated with castration-refractory prostate cancer (CRPC) development. We carried out RNA-seq based transcriptome profiling using 45 prostate samples with various disease progression steps such as benign prostate hyperplasia (BPH), primary cancer of prostate (CaP), advanced CaP and CRPC. Via various statistical analyses, we identified significant gene set associated with each progression step and observed that AR was the only gene feature associated with all progression steps, indicating that AR is the crucial mediator of and has a diverse activity across the CaP progressions. Among the samples in this data set, there are 4 pairs of advanced CaP and CRPC samples, in which each pair was obtained from the same patient. Using these paired samples, we also determined differentially expressed genes between advanced CaP and CRPC, and performed comparative analysis of significant gene lists in matched sample pairs and in unpaired remained samples. By assessing expression difference between advanced CaP and CRPC groups, 309 and 182 genes were statistically significant in paired and unpaired samples, respectively (P < 0.001). When these two gene lists were compared, a total of 15 genes were common and applied to a number of downstream experimental assays. Overall design: RNA-seq data of 45 CRPC samples were generated. Total RNA was isolated by RNeasy Mini Kit (Qiagen, CA, USA), according to the manufacturer''s protocol. The quality and integrity of the RNA were confirmed by agarose gel electrophoresis and ethidium bromide staining, followed by visual examination under ultraviolet light. Sequencing library was prepared using TruSeq RNA Sample Preparation kit v2 (Illumina, CA, USA) according to the manufacturer's protocols. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads, fragmented, and converted into cDNAs. Then, adapters were ligated and the fragments were amplified on a PCR. Sequencing was performed in paired end reads (2x100 bp) using Hiseq-2000 (Illumina).

Publication Title

Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE21408
Comparison between liver transcriptomes of Korean native pig and Yorkshire
  • organism-icon Sus scrofa
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

There are clear phenotypic differences between Korean native pig (KNP) and Yorkshire (YS) breeds because of different interests for selection. YS has been artificially selected by industrial interests such as a growth rate and a lean meat production, however, KNP has been maintained as a regional breed by local interests such as a fat content in or between muscle and a disease resistance. A comparison of gene expression profile from a major tissue liver can reflect the overall effects of the artificial selection between the two pig breeds through long history. KNP (n=4) and YS (n=4) pigs were raised under the identical conditions. Global gene expression levels were measured in liver samples from these pigs using Affymetrix porcine genome array containing 23,937 probe sets. The clustering analysis based on the individual transcriptome data showed a clear separation between two breeds in the liver tissue. We collected hepato-transcriptome data including 11,993 genes fully detected from four independent samples either in KNP or in YS. Based on both minimum positive false discovery rate (less than 15%) and fold change (|FC| > 1.5), 160 differentially expressed genes (DEGs) were collected from the liver between the two breeds. The functional analysis of these DEGs indicated clear distinctions in intra- and extra-cellular structure, cell proliferation, membrane trafficking, glycolytic pathway, mitochondrial function, protein metabolism, and immune response. The functional characteristics based on the DEGs were useful indicators to explain the differences between these two breeds developed for the specific purposes each other. The hepatic DGEs indicate that the YS has been lost expressivity of genes not required for the fast growth but maintained expressivity of genes for lean muscle production. The tissue-wise gene expression profiles indicate that the liver could be a major place to make the economic distinction between these two pig breeds.

Publication Title

Differences in hepatic gene expression as a major distinguishing factor between Korean native pig and Yorkshire.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP022131
Integrated epigenomic analyses of enhancer as well as promoter regions in gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000, IlluminaGenomeAnalyzerIIx

Description

To understand epigenetic changes in the distal regulatory as well as proximal regions, we performed RNA-seq, MBD-seq, and H3K27ac ChIP-seq on gastric tissues and cell lines. Overall design: mRNA sequencing profiles of normal tissue (n), purified gastric cancer (sc), and cultured gastric cancer cell (dc) were generated by deep sequencing, in five samples from three patients (csc1, csc2, csc3) and two replicates (csc1_sc2, csc1_sc3), using Illumina GAIIx and HiSeq2000.

Publication Title

Integrated epigenomic analyses of enhancer as well as promoter regions in gastric cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18653
Comparison between skeletal transcriptomes of Korean native pig and Yorkshire
  • organism-icon Sus scrofa
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular differentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.

Publication Title

Transcriptional alteration of p53 related processes as a key factor for skeletal muscle characteristics in Sus scrofa.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact