To understand molecular mechanisms by which reducing Id2 rescues impaired erythropoiesis and hematopoietic progenitor cell development in Gfi-1-/- mice, we compared gene expression in Gfi-1-/-;Id2+/- and Gfi-1-/- BMC using Affymetrix microarray.
Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells.
Specimen part
View SamplesExpression quantitative trait loci (eQTL) analyses were conducted separately on the glomerular and tubular portions of healthy human kidney samples obtained from subjects of European descent. Overall design: We aimed to define genotype driven gene expression changes in the glomerular and tubular compartments of human kidneys, identifying genetic variants (eVariants) that influence the expression of genes (eGenes). Later, we integrated this information with genotype and phenotype association studies (GWAS) to identify genes for which expression in the kidney shows differences in patients with GWAS variants.
Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.
Specimen part, Disease, Disease stage, Subject
View SamplesPurpose: The goal of the study was to integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signalling networks, relevant for rheumatoid arthritis (RA). Method:RNA-seq based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated RA patients, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of “connector” genes derived from pathway analysis was then tested for differential expression in the initial discovery cohort. Results: 11 qualifying genes were selected for pathway analysis and grouped into 2 evidence-based functional networks, containing 29 and 27 additional “connector” molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. 3 genes showed similar expression difference in both treated and non-treated RA patients and additional nine genes were differentially expressed in at least one patients' group compared to healthy controls. Conclusion: Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes in the pathogenesis of RA. Overall design: Illumina RNA-seq was performed on RNA from pereferial blood mononuclear cells taken from 12 healthy individuals, 5 untreated RA patients, and 7 treated RA patients
Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses.
Cell line
View SamplesWithin the overall project, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (pro)renin receptor ((P)RR), stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR.
Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses.
Cell line
View SamplesWithin the overall project, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (pro)renin receptor ((P)RR), stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR.
Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses.
Cell line
View SamplesFetal and adult -globin gene expression is tightly regulated during human development. Fetal globin genes are transcriptionally silenced during embryogenesis through the process of hemoglobin switching. Efforts to understand the transcriptional mechanism(s) behind fetal globin silencing have led to novel strategies to derepress fetal globin expression in the adult, which could alleviate symptoms in hereditary b-globin disorders including sickle cell disease (SCD) and -thalassemia. We identified a novel zinc finger protein, pogo transposable element with zinc finger domain (Pogz), expressed in mouse and human hematopoietic stem and progenitor cells, which represses embryonic b-like globin gene expression in mice. Ablation of Pogz expression in adult hematopoietic cells in vivo results in persistence of embryonic b-like globin expression without significantly affecting erythroid development or mouse survival. Elevated embryonic -like globin expression correlates with reduced expression of Bcl11a, a known repressor of embryonic -like globin expression, in Pogz-/- fetal liver cells. Pogz binds to the Bcl11a promoter, and, to erythroid specific intragenic regulatory regions. Importantly, Pogz+/- mice develop normally, but show elevated embryonic b-like globin expression in peripheral blood cells, demonstrating that reducing Pogz levels results in persistence of embryonic b-like globin expression. Finally, knockdown of POGZ in primary human CD34+ hematopoietic stem and progenitor cell derived erythroblasts, reduces BCL11A expression and increases fetal hemoglobin expression. These findings are significant since new therapeutic targets and strategies are needed to treat the increasing global burden of b-globin disorders.
POGZ Is Required for Silencing Mouse Embryonic β-like Hemoglobin and Human Fetal Hemoglobin Expression.
Specimen part
View SamplesThe therapeutic landscape of melanoma is rapidly changing. While targeted inhibitors yield significant responses, their clinical benefit is often limited by the early onset of drug resistance. This motivates the pursuit to establish more durable clinical responses, by developing combinatorial therapies. But while potential new combinatorial targets steadily increase in numbers, they cannot possibly all be tested in patients. Similarly, while genetically engineered mouse melanoma models have great merit, they do not capture the enormous genetic diversity and heterogeneity typical in human melanoma. Furthermore, whereas in vitro studies have many advantages, they lack the presence of micro-environmental factors, which can have a profound impact on tumor progression and therapy response. This prompted us to develop an in vivo model for human melanoma that allows for studying the dynamics of tumor progression and drug response, with concurrent evaluation and optimization of new treatment regimens. Here, we present a collection of patient-derived xenografts (PDX), derived from BRAFV600E, NRASQ61 or BRAFWT/NRASWT melanoma metastases. The BRAFV600E PDX melanomas were acquired both prior to treatment with the BRAF inhibitor vemurafenib and after resistance had occurred, including six matched pairs. We find that PDX resemble their human donors' melanomas regarding biomarkers, chromosomal aberrations, RNA expression profiles, mutational spectrum and targeted drug resistance patterns. Mutations, previously identified to cause resistance to BRAF inhibitors, are captured in PDX derived from resistant melanomThis melanoma PDX platform represents a comprehensive public resource to study both fundamental and translational aspects of melanoma progression and treatment in a physiologically relevant setting. Overall design: Melanoma samples pre and post Vemurafenib treatment from patient and matching patient derived xenografts (PDX)
XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data.
No sample metadata fields
View SamplesNuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S -transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.
Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver.
Sex, Age, Specimen part
View SamplesAll mRNA was isolated after 8 hours of culture time in each of three culture conditions. (1) TCPS Plate, (2) Collagen-GAG 2 dimensional coated plate and (3) collagen-GAG three dimensional mesh.
Fibroblast remodeling activity at two- and three-dimensional collagen-glycosaminoglycan interfaces.
No sample metadata fields
View Samples