Gene expression profile of in vitro differentiated control and CD33 KO CD34+ cells (with 70-85% CD33 KO) were analyzed by RNA-seq to exclude any major impact of CD33 loss on downstream gene expression Overall design: Primary CD34+ cells were treated with CRISPR/Cas9 to disrupt the CD33 gene and grown in culture for 5-7 days prior to analysis; mRNA profile was compared to control cells from the same donor that were also treated with Cas9 and a control gRNA; 5 different donors were evaluated (CD33 KO/control for each = total 10 samples)
Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia.
Subject
View SamplesPatients with Klinefelter Syndrome have the karyotype 47,XXY. These men are suffering from hypergonadotropic hypogonadism and are infertile. It is debated whether the different hormonal constitution observed in these patients or different gene expression
Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome.
Sex, Specimen part
View SamplesExpression data from CD34+ hematopoietic cells transduced with control or anti-SLPI shRNA, serum starved and treated with G-CSF.
A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.
Specimen part
View SamplesGene expression patterns of testicular seminoma were analysed applying oligonucleotide microarrays in 40 specimens of different tumour stages (pT1, pT2, pT3) and in 3 normal testes.
Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4.
No sample metadata fields
View SamplesConrad et al. Nature 456, 344349 (2008) have generated human adult germline stem cells (haGSCs) from human testicular tissue, which they claim have similar pluripotent properties to human embryonic stem cells (hESCs). Here we investigate the pluripotency of haGSCs by using global gene-expression analysis based on their gene array data and comparing the expression of pluripotency marker genes in haGSCs and hESCs, and in haGSCs and human fibroblast samples derived from different laboratories, including our own. We find that haGSCs and fibroblasts have a similar gene-expression profile, but that haGSCs and hESCs do not. The pluripotency of Conrad and colleagues haGSCs is therefore called into question.
Human adult germline stem cells in question.
Specimen part
View SamplesRapalogs, inhibitors of mTORC1 (mammalian target of rapamycin complex 1), increase life span and delay age-related phenotypes in many species. However, the molecular mechanisms have not been fully elucidated. We determined gene expression changes comparing 6- and 24-month-old rats in the kidney, liver, and skeletal muscle, and asked which of these changes were counter-regulated by a clinically-translatable (short-term and low-concentration) treatment, with a rapalog (RAD001). Surprisingly, RAD001 had a more pronounced effect on the kidney under this regimen in comparison to the liver or skeletal muscle. Histologic evaluation of kidneys revealed that the severity of chronic progressive nephropathy lesions was lower in kidneys from 24-month-old rats treated with RAD001 compared with vehicle. In addition to other gene expression changes, c-Myc, which has been shown to regulate aging, was induced by aging in the kidney and counter-regulated by RAD001. RAD001 caused a decrease in c-Myc protein, which could be rescued by a proteasome inhibitor. These findings point to settings for use of mTORC1 inhibitors to treat age-related disorders, and highlight c-Myc regulation as one of the potential mechanisms by which mTORC1 inhibition is perturbing age-related phenotypes. Overall design: Transcriptional profiling was performed in kidney, liver and gastrocnemius muscles from three experimental groups of male Sprague Dawley rats. Rats aged 4.5 month (m) and 22.5 m were treated with vehicle and rats aged 22.5 m were treated with RAD001 for 6 weeks, with a read-out at 6 and 24 months.
Short-term Low-Dose mTORC1 Inhibition in Aged Rats Counter-Regulates Age-Related Gene Changes and Blocks Age-Related Kidney Pathology.
No sample metadata fields
View SamplesKnockdown of HCLS1 mRNA in CD34+ hematopoietic cells resulted in a severe diminished in vitro myeloid differentiation which was in line with downregulation of a set of genes, e.g., of Wnt or PI3K/Akt signaling cascades. We performed microarrays to evaluate specific genes and signaling systems regulated by HCLS1 in hematopoietic cells.
Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis.
Specimen part, Disease, Disease stage, Treatment
View SamplesRats were given pulmonary embolism by i.v. injection of 25 micron polystyrene microspheres or 0.01% Tween20 solution as vehicle control
Differential effect of mild and severe pulmonary embolism on the rat lung transcriptome.
No sample metadata fields
View SamplesBP and ER encode proteins that act synergistically to regulate Arabidopsis inflorescence architecture. To search for genes/proteins that influence the BP/ER signaling pathways, we conducted mutagenesis of the bp er double mutant and found that a mutation in FILAMENTOUS FLOWER (FIL) suppresses many of the morphological/developmental defects in bp er. Given that FIL encodes a Zn-finger containing transcription factor, microarray analysis was conducted on bp er vs. the bp er fil line to identify genes that are misregulated and which might implicate specific genes/proteins/pathways that are involved in regulating inflorescence development.
A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels.
No sample metadata fields
View SamplesTime and dose related expression profiles of rat right heart tissue in microsphere bead model for Pulmonary embolism
Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats.
No sample metadata fields
View Samples