refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 173 results
Sort by

Filters

Technology

Platform

accession-icon GSE53353
A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Expression data from CD34+ hematopoietic cells transduced with control or anti-SLPI shRNA, serum starved and treated with G-CSF.

Publication Title

A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54764
Analysis of transcriptional targets of KLF6 in HCC through gene expression profiling and ChIP-sequencing
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54762
Gene expression changes occuring as a result of KLF6 knockdown in murine HCC
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed whole genome expression profiling using a murine HCC cell line that was either infected with a virus containing shRNA targeting KLF6 or GFP. 3 sets of infections were performed for both shGFP and shKLF6 samples. RNA was isolated from these samples and subsequently analyzed.

Publication Title

A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54757
Determination of gene expression changes in HCC cells selected for migration ability.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We determined whole genome expression changes in 2 migratory cell lines that were derived from a parent HCC cell line.

Publication Title

A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP150412
The interferon-induced exonuclease, ISG20, exerts antiviral activity through upregulation of type I interferon response proteins
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Type I interferon-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20 kDa ISG, ISG20, is a nuclear 3''-5''exonuclease with preference for single stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20-/- mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20-/- mice compared to wild-type viruses, but not in ISG20 ectopic-expressing cells. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expressionof other ISGs that inhibit translation and possibly other activities in the replication cycle. Overall design: Two clones each of tet-inducible MEFs overexpressing eGFP (control), Isg20, and Isg20(D94G) were induced by tetracycline removal for 72 hours. rRNA was depleted with RiboMinus Eukaryote kit (Life Technologies) and prepared for Illumina directional 100bp paired-end HiSeq2000 reads.

Publication Title

The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE40712
Expression data from CD34+ hematopoietic cells transduced with control or anti-HCLS1 shRNA
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Knockdown of HCLS1 mRNA in CD34+ hematopoietic cells resulted in a severe diminished in vitro myeloid differentiation which was in line with downregulation of a set of genes, e.g., of Wnt or PI3K/Akt signaling cascades. We performed microarrays to evaluate specific genes and signaling systems regulated by HCLS1 in hematopoietic cells.

Publication Title

Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE8562
XBP1 confers estrogen independence and antiestrogen resistance in breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human X-box binding protein-1 (XBP1) is an alternatively spliced transcription factor that participates in the unfolded protein response (UPR), a stress signaling pathway that allows cells to survive the accumulation of unfolded proteins in the endoplasmic reticulum lumen. We have previously demonstrated that XBP1 expression is increased in antiestrogen-resistant breast cancer cell lines, and is co-expressed with estrogen receptor alpha (ER) in breast tumors. The purpose of this study is to investigate the role of XBP1 and the UPR in estrogen and antiestrogen responsiveness in breast cancer. Overexpression of spliced XBP1 (XBP1(S)) in ER-positive breast cancer cells leads to estrogen-independent growth and reduced sensitivity to growth inhibition induced by the antiestrogens Tamoxifen and Faslodex in a manner independent of functional p53. Data from gene expression microarray analyses imply that XBP1(S) acts through regulating the expression of ER, the anti-apoptotic gene BCL2, and several other genes associated with control of the cell cycle and apoptosis.

Publication Title

Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE96670
Tamoxifen response and resistance in invasive lobular breast cancer
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE96570
Integrated Molecular Analysis of Tamoxifen-Resistant Invasive Lobular Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.

Publication Title

Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE75582
Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Safety sciences and the identification chemical hazard have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically- important field of peripheral neurotoxicity is still largely unexplored. Here, a 2-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as functional parameter highly sensitive to disturbances by toxicants was used as endpoint reflecting specific neurotoxicity. The differentiation of cells towards dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants, as well as neurite growth enhancers, were correctly identified. Various classes of chemotherapeutics causing human peripheral neuropathies were identified, while they were missed when tested on human central neurons. The PeriTox-test established here shows the potential of human stem cells for clinically-relevant safety testing of drugs in use and of new emerging candidates.

Publication Title

Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact