RNA sequencing of ILC2s sorted from ß2 adrenergic receptor agonist-treated and non-treated mice Overall design: RNAs of ILC2s sorted as KLRG1+CD127+CD90+Lin-CD45+ from ß2 adrenergic receptor agonist-treated and non-treated mice mLNs 4 days post N. brasiliensis infection were analyzed
β<sub>2</sub>-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.
Specimen part, Cell line, Treatment, Subject
View SamplesThe type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 play critical roles in stimulating innate and adaptive immune responses required for resistance to helminth infection and promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells (ILC2s) are a potent source of type 2 cytokines and while significant advances have been made in understanding the cytokine milieu that promotes ILC2 responses, there are fundamental gaps in knowledge regarding how ILC2 responses are regulated by other stimuli. In this report, we demonstrate that ILC2s in the gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other hematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation and secretion of type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gaq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1-/- mice compared to control mice. Further, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU-NMUR1 neuronal signaling circuit provides a selective and previously unrecognized mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites. Overall design: To assess changes in gene expression in ILC2s due to NMU treatment, RNAseq was performed on 3 samples from NMU-treated mice and 4 samples from PBS-treated mice.
The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation.
Specimen part, Cell line, Treatment, Subject
View SamplesThe type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 play critical roles in stimulating innate and adaptive immune responses required for resistance to helminth infection and promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells (ILC2s) are a potent source of type 2 cytokines and while significant advances have been made in understanding the cytokine milieu that promotes ILC2 responses, there are fundamental gaps in knowledge regarding how ILC2 responses are regulated by other stimuli. In this report, we demonstrate that ILC2s in the gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other hematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation and secretion of type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gaq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1-/- mice compared to control mice. Further, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU-NMUR1 neuronal signaling circuit provides a selective and previously unrecognized mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites. Overall design: Transcriptional differences between ILC2s and ILC3s were determined by RNAseq using 3 ILC2 samples and 3 ILC3 samples.
The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation.
Specimen part, Cell line, Subject
View SamplesPioneer transcription factors are able to recognise and bind their motif sequences in inaccessible or closed chromatin, and their ability to achieve this is required to establish new regulatory elements and transcriptional networks during development and cellular reprogramming. An essential feature of this pioneering activity is the transition from inaccessible chromatin to a nucleosome-depleted and accessible chromatin state typical of normal regulatory elements, and this is believed to facilitate further transcription factor binding events. However, the mechanisms by which many pioneer transcription factors achieve this remarkable feat remain elusive. Here we reveal that the pluripotency-associated pioneer factor OCT4 binds inaccessible chromatin to shape the chromatin accessibility, transcription factor co-binding and regulatory potential of thousands of distal regulatory elements in mouse embryonic stem cells, demonstrating that its pioneering activity is a feature of normal pluripotency, and not just reprogramming. The accessible chromatin formed at OCT4 binding sites relies on the chromatin remodelling factor BRG1, which is recruited to these sites by OCT4. The occupancy of BRG1 is then required to support OCT4/SOX2 co-binding and normal expression of the pluripotency-associated transcriptome, and this reliance on BRG1 reflects OCT4 binding dynamics during cellular reprograming and early mouse development. Together these observations reveal a distinct requirement for the chromatin remodelling factor BRG1 in shaping the pioneering activity of OCT4 and regulating the pluripotency network in embryonic stem cells. Overall design: ZHBTC4 and Brg1fl/fl mouse embryonic stem cells were used to ablate OCT4 and BRG1 expression respectively, followed by ATAC-seq, ChIP-seq or RNA-seq to examine their contribution towards chromatin accessibility, transcription factor occupancy, and gene expression.
The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells.
Cell line, Treatment, Subject
View SamplesEmbryonic mouse brain development involves a sequential differentiation of multipotent progenitor cells into neurons and glia. Using microarrays and large 2-D electrophoresis, we investigated the transcriptome and proteome of mouse brains at embryonic days 9.5, 11.5 and 13.5. During this developmental period, neural progenitor cells shift from proliferation to neuronal differentiation. As expected, we detected numerous expression changes between the time points investigated but interestingly, the rate of alteration was about 10% to 13% of all proteins and mRNAs during every two days of development. Furthermore, up- and downregulation was balanced. This was confirmed for two additional stages of development, embryonic day 16 and 18. We hypothesize that during embryonic development, the rate of protein expression alteration is rather constant due to a limitation of cellular resources such as energy, space and free water. The similar complexity found at the transcriptome and proteome level at all stages suggests, that changes in relative concentration of gene products rather than an increased number of gene products dominate throughout cellular differentiation. We found that metabolism and cell cycle related gene products were downregulated in expression when precursor cells switched from proliferation to neuronal differentiation (day 9.5 to 11.5), whereas neuron specific gene products were upregulated. A detailed analysis revealed their implication in differentiation related processes such as rearrangement of the actin cytoskeleton as well as Notch and Wnt signaling pathways.
Transcriptome and proteome analysis of early embryonic mouse brain development.
No sample metadata fields
View SamplesThe roles of histone demethylase RBP2 in gene expression were assessed using gene expression profiling experiments with wild type and RBP2-/- primary MEFs. Several cytokine genes including SDF1 and Kit ligand were upregulated upon inactivation of RBP2.
The retinoblastoma binding protein RBP2 is an H3K4 demethylase.
No sample metadata fields
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the different inducible cell lines
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the inducible not-tagged cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the knock-down of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the knock-down cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View Samples