Rationale: Monitoring and controlling cardiomyocyte activity with optogenetic tools offers exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level. Objective: To test the hypothesis that cardiomyocyte-targeted voltage-sensitive fluorescence protein 2.3 (VSFP2.3) can be exploited as optogenetic tool for the monitoring of electrical activity in isolated cardiomyocytes and the whole heart as well as function and maturity in induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Methods and Results: We first generated mice with cardiomyocyte-restricted expression of VSFP2.3 and demonstrated distinct sarcolemmal localization of VSFP2.3 without any signs for associated pathologies (assessed by echocardiography). Optically recorded VSFP2.3 signals correlated well with membrane voltage measured simultaneously by patch-clamping. The utility of VSFP2.3 for human action potential recordings was confirmed by simulation of immature and mature action potentials in murine VSFP2.3 cardiomyocytes. Optical cardiograms (OCGs) could be monitored in whole hearts ex vivo and minimally invasively in vivo via fiber optics at physiological heart rate (10 Hz) and under pacing-induced arrhythmia. Finally, we reprogrammed tail-tip fibroblasts from transgenic mice and used the VSFP2.3 sensor for benchmarking functional and structural maturation in iPSC-derived cardiomyocytes. Conclusions: We introduce a novel transgenic voltage-sensor model as a new method in cardiovascular research and provide proof-of-concept for its utility in optogenetic sensing of physiological and pathological excitation in mature and immature cardiomyocytes in vitro and in vivo. Overall design: Determination of transgene (VSFP2.3) cardiotoxicity
Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
No sample metadata fields
View SamplesInvasive extravillous trophoblasts (EVTs) of the human placenta are critically involved in successful pregnancy outcome since they remodel the uterine spiral arteries to increase blood flow and oxygen delivery to the placenta and the developing fetus. To gain more insights into their biological role different primary cell culture models are commonly utilised. However, access to early placental tissue may be limited and primary trophoblasts rapidly cease proliferation in vitro impairing genetic manipulation. Hence, trophoblastic cell lines have been widely used as surrogates to study EVT function. Although the cell lines share some molecular marker expression with their primary counterpart, it is unknown to what extent they recapture the invasive phenotype of EVT. Therefore, we here report the first thorough GeneChip analyses of SGHPL-5, HTR-8/SVneo, BeWo, JEG-3 and the novel ACH-3P trophoblast cells in comparison to previously analysed primary villous cytrophoblasts and extravillous trophoblasts.
Trophoblast invasion: assessment of cellular models using gene expression signatures.
Specimen part
View SamplesThe transcription factor SRF (serum response factor) mediates epilepsy mediated gene expression
SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model.
Specimen part, Treatment
View SamplesWe aimed to analyze the effects of Wnt-1 overexpression on the mRNA expression profile of human melanoma in a mouse xenograft model and correlated the results with then presence or absence of lymphangiogenesis and metastasis. Affymetrix gene expression analysis revealed activation of canonical and non-canonical targets genes in response to Wnt-1 as compared with controls. In regard to lymphangiogenic factors, the amount of VEGF-C was the single best marker to correlate with the amount of lymph-angiogenesis.
Wnt1 is anti-lymphangiogenic in a melanoma mouse model.
Cell line, Treatment
View SamplesHeme Oxygenase-1 (HO-1) is expressed in many cancers and influences the growth, survivall and metastasis of tumors, however, the molecular mechanisms remains largely unknown. To identify a common mechanism of action of HO-1 in cancer, we studied the global effect of HO-1 on the transcriptome of multiple tumors. Genome-wide expression profiling of HO-1 expressing versus HO-1 silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 14 genes, the expression of which correlated firmly and universally with that of HO-1 (P < 0.001). These genes included regulators of cell plasticity and extracellular matrix remodeling (MMP2, ADAM8, TGF1, BGN, COL21A1, PXDN), signaling (CRIP2, MICB), amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2 and HSD17B1), protein stabilization (IFI30) and phosphorylation (ALPPL2). PXDN, one of the genes being co-expressed with HO-1, was selected for further analysis. Immunofluorescence and western blotting confirmed positive correlation of PXDN with HO-1 levels in BeWo cancer cells as well as co-localization in invasive extravillous trophoblast cells of first trimester placenta. Loss of HO-1 in BeWo cells correlated with reduced cell adhesion to Collagen type I, Fibronectin and Laminin. The adhesion-promoting effects of HO-1 were dependent on PXDN expression, as loss of PXDN in HO-1 expressing BeWo cells led to reduced cell attachment to Laminin and Fibronectin coated wells.
Transcriptome analysis of human cancer reveals a functional role of heme oxygenase-1 in tumor cell adhesion.
Specimen part
View SamplesInvasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma.
Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma.
No sample metadata fields
View SamplesHuman cytotrophoblast organoid cultures were established from the villous trophoblast of first trimester placentas. We analyzed the global expression profile of the cytotrophoblast organoids (CTB-ORG) and compared to the profile of the tissue of origin i.e. villous cytotrophoblast (vCTB) as well as to differentiated syncytiotrophoblast (STB) and placental fibroblasts (FIB). Overall design: We employed QuantSeq method to analyzed the global expression profile of the cytotrophoblast organoids (4 replicates, CTB-ORG 1-4) and compared to the profile of the tissue of origin i.e. villous cytotrophoblast (3 replicates, vCTB 1-3) as well as to in vitro differentiated syncytiotrophoblast (3 replicates, STB1-3) and placental fibroblasts (2 replicates, FIB 1-2).
Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta.
Specimen part, Subject
View SamplesSW480 cells were treated with 2uM crizotinib for 72h (versus DMSO) Overall design: Examination of differential up- or down-regulated genes after crizotinib treatment
Global survey of the immunomodulatory potential of common drugs.
Cell line, Subject
View SamplesThe aim of this study was to identify differentially expressed signatures of non-invasive (EGFR+) and invasive (HLA-G+) human trophoblast subtypes. These populations were isolated from single first trimester placentas from 10-12 weeks of gestation. Overall design: We performed RNAseq to analyze the global expression profile of two different trophoblastic subtypes.
Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression.
Specimen part, Subject
View Samples