This SuperSeries is composed of the SubSeries listed below.
The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia.
Specimen part, Disease stage
View SamplesIn order to examine if the upregulation of DNA repair genes on chromosome 8 was associated with the abnormal DSB phenotype observed in trisomy 8 (defined by array CGH or cytogenetics), we compared the mRNA levels of DNA repair genes on chromosome 8 in trisomy 8 t-AML patients versus normal t-AML gammaH2AX responders using gene expression array data.
The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia.
Specimen part
View SamplesMyelodysplastic syndromes (MDS) are a heterogenous group of hematopoietic stem cell disorders characterized by dysplastic blood cell formation and peripheral blood cytopenias. Up to 30% of patients with MDS will progress to a highly chemotherapy-resistant secondary acute myeloid leukemia (sAML). We identified mutations in U2AF1 in MDS patients and patients with U2AF1 mutations are at an increased risk of developing sAML.
Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesWe previously showed that a diet containing phloridzin suppressed the blood glucose levels in streptozotocin-induced diabetic mice most likely by inhibiting glucose absorption from the small intestine. In this study, we showed that 0.5% and 1% phloridzin diets significantly reduce the blood glucose levels in healthy normal BALB/c mice after 7 days of feeding.
Phloridzin reduces blood glucose levels and alters hepatic gene expression in normal BALB/c mice.
Sex, Specimen part
View SamplesQuercetin is a food component that may ameliorate the diabetic symptoms. We examined hepatic gene expression of BALB/c mice with streptozotocin (STZ)-induced diabetes to elucidate the mechanism of the protective effect of dietary quercetin on diabetes-associated liver injury.
Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice.
Sex, Specimen part
View SamplesWe showed that diets containing 0.1% or 0.5% quercetin lowered the STZ-induced increase in blood glucose levels and improved plasma insulin levels. A cluster analysis of the hepatic gene expressions showed that 0.5% quercetin diet suppressed STZ-induced alteration of gene expression. Gene set enrichment analysis (GSEA) and quantitative RT-PCR analysis showed that the quercetin diets had their greatest suppressive effect on the STZ-induced elevation of expression of cyclin dependent kinase inhibitor p21(WAF1/Cip1) (Cdkn1a).
Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice.
Sex, Specimen part
View SamplesPhloridzin is a dihydrochalcone typically contained in apples. A diet containing 0.5 % phloridzin significantly improves hyperglycemia but not hypoinsulinemia and tissue lipid peroxidation in streptozotocin (STZ)-induced diabetic mice after 14 days. The phloridzin diet has no effect on the alteration of hepatic gene expression in STZ-induced diabetic mice.
Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice.
Sex, Specimen part
View SamplesTo determine the effect of consumption of a quercetin-rich diet on obesity and dysregulated hepatic gene expression, C56BL/6J mice were fed for 20 weeks on control or a Western diet high in fat, cholesterol and sucrose, both with or without 0.05% quercetin. Chronic dietary intake of quercetin reduced body weight gain and visceral and liver fat accumulation, and improved hyperglyceamia, hyperinsulinaemia, dyslipidaemia in mice fed a Western-style diet.
Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice.
Sex, Specimen part
View SamplesBackground: Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems. We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods: Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freunds adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results: Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions: These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. Key words: prenatal alcohol exposure (PAE), ethanol, inflammation, arthritis, gene expression, rat.
Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain.
Sex, Specimen part, Disease
View SamplesEarly onset sepsis due to Group B streptococcus (GBS) leads to neonatal morbidity, increased mortality and long term neurological deficencies. Interaction between septicemic GBS and confluent monlayers of human coronary artery endothelial cells (HCAEC) was analyzed by a genome wide expression profiling. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (Granulocyte chemotactic protein 2 (CXCL6)), ELISA (Urokinase, Cyclooxygenase 2 (COX2), Granulocyte chemotactic protein 1 (IL8)) and Western Blotting (Heme oxygenase1, BCL2 interacting protein (BIM)) at various time points between 4 and 24 hours. In total, 124 genes were differentially regulated (89 upregulated, 35 downregulated) based on a more than 3-fold difference to unstimulated HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection and inflammation. We confirmed upregulation of urokinase (UPA), COX2, HMOX1 and BCL2 interacting protein and downregulation of CXCL6 and IL8. These results indicate that GBS infection might lead to impaired function of the innate immune system and might contribute to hemorrhagic and inflammatory complications during GBS sepsis.
Infection of human coronary artery endothelial cells by group B streptococcus contributes to dysregulation of apoptosis, hemostasis, and innate immune responses.
No sample metadata fields
View Samples