Mature messenger RNAs (mRNAs) consist of coding sequence (CDS) and 5’ and 3’ untranslated regions, typically expected to show similar abundance within a given neuron. Examining mRNA from defined neurons we unexpectedly show extremely common unbalanced expression of cognate 3’ UTR and CDS sequences, observing many genes with high UTR relative to CDS, and others with high CDS to UTR. By in situ hybridization 19 of 19 genes examined show a broad range of UTR to CDS expression ratios in different neurons and other tissues. These ratios may be spatially graded or change with developmental age, but are consistent across animals. Further, for two genes examined, a UTR to CDS ratio above a particular threshold in any given neuron correlated with reduced or undetectable protein expression. Our findings raise questions about the role of isolated UTR sequences in regulation of protein expression, and highlight the importance of separately examining UTR and CDS sequences in gene expression analyses. Overall design: dopamine or serotonin neuronal mRNA was purified selectively by using dopamine transporter (DAT) and SLC6A4 (serotonin transporter) BacTrap mice. RNA sequencing was carried out using Illumina HiSeq 2500.
Widespread Differential Expression of Coding Region and 3' UTR Sequences in Neurons and Other Tissues.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics.
No sample metadata fields
View SamplesTo model human cerebellar disease, we developed a novel, reproducible method to generate cerebellar Purkinje cells (PCs) from human pluripotent stem cells (hPSCs) that formed synapses when cultured with mouse granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. Using translating ribosomal affinity purification (TRAP) to compare gene expression of differentiating hPSC-PCs to developing mouse PCs, we found hPSC-PCs to be most similar to late juvenile (P21) mouse PCs. Analysis of mouse PCs defined novel developmental expression patterns for mitochondria and autophagy associated genes, recapitulated in hPSC-PCs. We further identified species differences in gene expression and confirmed protein expression of CD40LG in native human, but not mouse PCs. This study provides a robust method for generating relatively mature hPSC-PCs with human specific gene expression and defines novel genetic features in comparison to the first comprehensive analysis of global gene expression patterns of postnatal mouse PC development.
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics.
No sample metadata fields
View SamplesTo model human cerebellar disease, we developed a novel, reproducible method to generate cerebellar Purkinje cells (PCs) from human pluripotent stem cells (hPSCs) that formed synapses when cultured with mouse granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. Using translating ribosomal affinity purification (TRAP) to compare gene expression of differentiating hPSC-PCs to developing mouse PCs, we found hPSC-PCs to be most similar to late juvenile (P21) mouse PCs. Analysis of mouse PCs defined novel developmental expression patterns for mitochondria and autophagy associated genes, recapitulated in hPSC-PCs. We further identified species differences in gene expression and confirmed protein expression of CD40LG in native human, but not mouse PCs. This study provides a robust method for generating relatively mature hPSC-PCs with human specific gene expression and defines novel genetic features in comparison to the first comprehensive analysis of global gene expression patterns of postnatal mouse PC development.
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics.
No sample metadata fields
View SamplesThe identification of genes and deduced pathways from the mature human oocyte can help us better understand oogenesis, folliculogenesis, fertilization, and embryonic development. Human metaphase II oocytes were used within minutes after removal from the ovary, and its transcriptome was compared with a reference sample consisting of a mixture of total RNA from 10 different normal human tissues not including the ovary. RNA amplification was performed by using a unique protocol. Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were used for hybridizations. Compared with reference samples, there were 5,331 transcripts significantly up-regulated and 7,074 transcripts significantly down-regulated in the oocyte. Of the oocyte up-regulated probe sets, 1,430 have unknown function. A core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. GeneChip array results were validated using RT-PCR in a selected set of oocyte-specific genes. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This report provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes may expand our knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis.
The transcriptome of human oocytes.
No sample metadata fields
View SamplesPurpose: The goal of this study was to determine biological consequences during liver regeneration following partial hepatectomy in mice by next-generation sequencing. A particular interest was to compare mice with either a floxed b-PDGFR allele to mice that harbored a deletion of b-PDGFR in hepatic stellate cells (HSCs), by crossing b-PDGFR fl/fl mice with transgenic GFAP-Cre mice. Methods: b-PDGFR fl/fl mice or mice with a HSC-specific deletion of b-PDGFR underwent either sham operation or 70% partial hepatectomy. Following 72 hours, livers were collected and total RNA was extracted using tizol, followed by a purification using Quiagen spin columns including an on-column DNAse digestion step. Conclusion: Our study represents a detailed analysis of hepatic transcriptome, with biologic replicates, generated by RNA-seq technology of livers following sham operation or partial hepatectomy in b-PDGFR fl/fl mice or b-PDGFRfl/fl/GRAP-Cre mice. Overall design: Whole liver mRNA profiles of sham operated livers or livers collected 72hours after partial hepatectomy of beta-PDGFR fl/fl and beta-PDGFR fl/fl/GFAP-Cre (creating a hepatic stellate cell-specific deletion of b-PDGFR) mice were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.
Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice.
No sample metadata fields
View SamplesReprogramming human somatic cells into induced pluripotent stem cells (iPSC) has been suspected of causing de novo copy number variations (CNVs). To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR) to amplify across the CNVs'' breakpoints, we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts and are manifested in iPSC colonies due to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. Overall design: We have generated and characterized hiPSC lines derived from skin fibroblasts collected from seven members of two families, which were competent to be differentiated into neuronal progenitors and neurons
Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.
Specimen part, Subject
View SamplesTenotomy is the release of muscle preload that causes abrupt shortening of the muscle and models atrophy and fibrosis without inflammatory response. Fibrosis in the skeletal muscle is known to be triggered by TGF-, which is activated by mediators of inflammatory events. As these were lacking, tenotomy provided an opportunity to investigate transcriptional events on a background without inflammation. An unbiased look at the transcriptome of tenotomy-immobilized soleus muscle revealed that the majority of the transcriptional changes took place in the first four weeks.
Tenotomy immobilization as a model to investigate skeletal muscle fibrosis (with emphasis on Secreted frizzled-related protein 2).
Sex, Specimen part
View SamplesIn mouse, the adrenocortical dysplasia (acd) phenotype shows limb and body axis anomalies, as a result of p53-dependent apoptosis, and perinatal lethality. The p53 deficiency partially rescues anomalies, but not perinatal lethality, implicating the involvement of p53-independent mechanisms in the acd phenotype. Differentially expressed genes in acd mutant and double mutant embryos were identified. p53-dependent and independent pathways contributing to acd phenotype were characterized.
High-throughput gene expression analysis identifies p53-dependent and -independent pathways contributing to the adrenocortical dysplasia (acd) phenotype.
Specimen part
View SamplesStudy of the gene expression of T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316
Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells.
Specimen part, Cell line, Compound
View Samples