This SuperSeries is composed of the SubSeries listed below.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line, Treatment
View SamplesBackground: Glucocorticoids (GCs) cause apoptosis in malignant cells of lymphoid lineage by transcriptionally regulating a plethora of genes. As a result, GCs are included in almost all treatment protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (chALL). The most commonly used synthetic GCs in the clinical setting are prednisolone and dexamethasone. While the latter has a higher activity and more effectively reduces the tumor load in patients, it is also accompanied by more serious adverse effects than the former. Whether this difference might be explained by regulation of different genes by the two GCs has never been addressed.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line
View SamplesBackground: Glucocorticoids (GCs) cause apoptosis in malignant cells of lymphoid lineage by transcriptionally regulating a plethora of genes. As a result, GCs are included in almost all treatment protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (chALL). The most commonly used synthetic GCs in the clinical setting are prednisolone and dexamethasone. While the latter has a higher activity and more effectively reduces the tumor load in patients, it is also accompanied by more serious adverse effects than the former. Whether this difference might be explained by regulation of different genes by the two GCs has never been addressed.
The synthetic glucocorticoids prednisolone and dexamethasone regulate the same genes in acute lymphoblastic leukemia cells.
Specimen part, Cell line, Treatment
View SamplesBackground: ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation, whereas its role in leukemia propagation and maintenance remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines. Findings: Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-DOWN set was significantly enriched for genes included in the cell activation, immune response, apoptosis, signal transduction and development and differentiation categories, whereas in the E/R KD-UP set only the PI3K/AKT/mTOR signaling and hematopoietic stem cells categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories stem cell properties, B-cell differentiation, immune response, cell adhesion and DNA damage with RT-qPCR. Conclusion: The results of our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with regular B-cell development by repressing key functions that are necessary under physiological circumstances. E/R may thus constitute also the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.
The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression.
Cell line, Treatment
View SamplesGlucocorticoids (GCs) are a central component in treating childhood acute lymphoblastic leukemia (chALL). They mainly act via regulating gene transcription. However, control of mRNA translation by GC has never been assessed systematically. In our research, T- and precursor B-ALL cells were cultured with and without GC for 6 hours and subjected to translational profiling, a technique combining sucrose gradient fractionation and microarray analysis of mRNA in different fractions. Analysis of GC regulation in different pools revealed no significant differences in regulation of mRNA translation by GC, suggesting no evidence for translational regulation by GC.
Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.
Cell line, Treatment
View SamplesEWS-FLI1 is a chimeric ETS transcription factor that is, due to a chromosomal rearrangement, specifically expressed in Ewings sarcoma family tumors (ESFT) and is thought to be the initiating event in the development of the disease. Previous genomic profiling experiments have identified a number of EWS-FLI1 regulated genes and genes that discriminate ESFT from other sarcomas, but so far a comprehensive analysis of EWS-FLI1 dependent molecular functions characterizing this aggressive cancer is lacking. In this study a molecular function map of ESFT was constructed based on an integrative analysis of gene expression profiling experiments on a uniform microarray platform following EWS-FLI1 knockdown in a panel of five ESFT cell lines, and on gene expression data from the same platform of 59 primary ESFT tumors. Based on the assumption that EWS-FLI1 is the driving transcriptional force in ESFT pathogenesis, we predicted an inverse correlation of gene expression for EWS-FLI1 regulated genes between the putative tissue of origin and the cell lines under EWS-FLI1 knockdown conditions. Consistent with recent reports, mesenchymal progenitor cells (MPC) were found to fit this hypothesis best and were therefore used as the reference tissue for the construction of the molecular function map in ESFT.
A molecular function map of Ewing's sarcoma.
No sample metadata fields
View SamplesPAX5-JAK2 has recently been identified as a novel recurrent fusion gene in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) but the function of the encoded chimeric protein has not yet been characterized in detail. Herein we show that the PAX5-JAK2 chimera, which consists of the DNA-binding paired domain of PAX5 and the active kinase domain of JAK2, is a nuclear protein that has the ability to bind to wild-type PAX5 target loci. Moreover, our data provide compelling evidence that PAX5-JAK2 functions as nuclear catalytically active kinase that autophosphorylates and in turn phosphorylates and activates downstream STATs in an apparently non-canonical mode. The chimeric protein also enables cytokine-independent growth of Ba/F3 cells and, therefore, possessing transforming potential. Importantly, the kinase activity of PAX5-JAK2 can be efficiently blocked by JAK2 inhibitors rendering it a potential target for therapeutic intervention. Together, our data show that PAX5-JAK2 simultaneously deregulates the PAX5 downstream transcriptional program and activates the JAK-STAT signaling cascade, and thus, by interfering with these two important pathways, may promote leukemogenesis.
The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesThough p53 mutations are rare in Ewing sarcoma, there is a strong indication that p53-mutant tumors form a particularly bad prognosis group. As such, novel treatment strategies are warranted that would specifically target and eradicate tumor cells containing mutant-p53 in this subset of ES patients.
Variability in functional p53 reactivation by PRIMA-1(Met)/APR-246 in Ewing sarcoma.
Specimen part
View SamplesTransient transfection of a Ewing's Sarcoma cell line expressing type I EWS-FLI1 fusion and doxycycline-inducible short hairpin RNA against EWS-FLI1 (A673sh)
Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma.
Cell line
View SamplesGene expression data of glucocorticoid resistant and sensitive acute lymphoblastic leukemia cell lines for the article: Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells
Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells.
Specimen part, Treatment
View Samples