refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 200 results
Sort by

Filters

Technology

Platform

accession-icon SRP069292
RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

High throughput massively parallel sequencing on mRNA libraries generated from cortices of bexarotene or vehicle treated APP/PS1 Overall design: Read counts analyzed for differential gene expression using edgeR

Publication Title

RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP154146
ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury, followed by genome-wide differential gene expression analysis. Overall design: We used 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). Groups consisted of 6-8 animals of both genders. TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury from 58 samples, followed by genome-wide differential gene expression analysis.

Publication Title

ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms.

Sample Metadata Fields

Sex, Treatment, Subject

View Samples
accession-icon SRP066440
Simultaneous pathway activity inference and global gene expression analysis using RNA-sequencing [myd88]
  • organism-icon Mus musculus
  • sample-icon 383 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Two 96-well plates per genotype wild type and Myd88 knockout, 4 hour time series in 0.5 hr increments Overall design: Myd88 BMDM transcriptional profiling to complement TF-seq data

Publication Title

Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP066443
Simultaneous pathway activity inference and global gene expression analysis using RNA-sequencing [halofuginone]
  • organism-icon Mus musculus
  • sample-icon 120 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Bone marrow derived macrophages treated with small molecules and stimulated with LPS Overall design: Wild-type BMDMs pretreated with small molecules for 30 minutes prior to stimulation with LPS

Publication Title

Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP066437
Simultaneous pathway activity inference and global gene expression analysis using RNA-sequencing [SM screen]
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Bone marrow derived macrophages treated with small molecules and stimulated with LPS Overall design: Wild-type BMDMs pretreated with small molecules for 30 minutes prior to stimulation with LPS

Publication Title

Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE54229
Tissue culture model of hypothermia
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Therapeutic hypothermia is a clinically effective treatment for various hypoxic and ischemic conditions, but the associated molecular mechanisms remain unclear. To gain insight into hypothermia-induced transcriptional response, mouse embryonic fibroblasts were exposed to mild hypothermia (32C) or normothermia (37C) for increasing time periods. We aimed to identify genes with temporally near-monotonic response as the most obvious candidates for mediating the therapeutic effects of hypothermia.

Publication Title

Estimating differential expression from multiple indicators.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP150182
Nitric oxide engages an anti-inflammatory feedback loop mediated by peroxiredoxin 5 in phagocytes
  • organism-icon Mus musculus
  • sample-icon 224 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptional profiling of murine dendritic cells stimulated with LPS and IFNg after shRNA knockdown of redox regulators. Overall design: shRNA targeting redox regulators were delivered to bone marrow derived dendritic cells. Cells were stimulated with LPS and IFNg prior to transcriptional profiling by RNAseq over a time course. Each sample sequenced on two Illumina lanes.

Publication Title

Nitric Oxide Engages an Anti-inflammatory Feedback Loop Mediated by Peroxiredoxin 5 in Phagocytes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP044038
Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference. [RNA-seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Genome control is operated by transcription factors (TF) controlling their target genes by binding to promoters and enhancers. Conceptually, the interactions between TFs, their binding sites, and their functional targets are represented by gene regulatory networks (GRN). Deciphering in vivo GRNs underlying organ development in an unbiased genome-wide setting involves identifying both functional TF-gene interactions and physical TF-DNA interactions. To reverse-engineer the GRN of eye development in Drosophila, we performed RNA-seq across 72 genetic perturbations and sorted cell types, and inferred a co-expression network. Next, we derived direct TF-DNA interactions using computational motif inference, ultimately connecting 241 TFs to 5632 direct target genes through 24926 enhancers. Using this network we found network motifs, cis-regulatory codes, and new regulators of eye development. We validate the predicted target regions of Grainyhead by ChIP-seq and identify this factor as a general co-factor in the eye network, being bound to thousands of nucleosome-free regions. Overall design: RNA-seq gene expression profiling across Drosophila 3rd instar larval wild type tissues (brain, eye-antennal and wing discs), specific cell types from the eye-antennal disc, sorted by FACS, and genetic perturbations (TF mutants, TF over-expression, and TF RNAi knockdown).

Publication Title

Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP159271
Innate mesenchymal TLR4/MyD88 signals promote spontaneous intestinal tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

This study shows that the TLR4/MyD88 pathway in intestinal mesenchymal cells promotes intestinal carcinogenesis in the APCmin mouse model. Overall design: 3' RNA-Seq (QuantSeq) profiling of ColVIcre+ wt and MyD88 knockout primary mouse intestinal mesenchymal cells before and after treatment with LPS for 6 hours. 3 replicates per group.

Publication Title

Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE9915
Transcript profiling of Lr1- and Lr34-mediated leaf rust resistance in wheat
  • organism-icon Triticum aestivum
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. The Affymetrix wheat genome array was used to identify wheat genes differentially expressed in a compatible interaction (Tc), an R-gene mediated incompatible interaction (Tc-Lr1), and a race non-specific resistance interaction (Tc-Lr34) in response to infection challenge by P. triticina race 1 at anthesis. Transcriptome interrogation was conducted by comparing mock- and P. triticina-inoculated leaves harvested at 3 and 7 days post inoculation (dpi).

Publication Title

Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact