Adenovirus infection leads to increased glycolytic metabolism in host cells. Expression of a single gene product encoded within the E4 early transcription region, E4ORF1, is sufficient to promote increased glycolytic flux in cultured epithelial cells.
Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.
Cell line
View Sampleshuman blood monocytes were isolated, activated and harvested at several timepoints
NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy.
Specimen part
View SamplesDeterming the influence of lipid metabolism on murine T cell blastogenesis. Gene expression studies from purified spleen and lymph node T cells with conditional deletion of the SREBP Cleavage Activating Protein (SCAP) ex vivo or activated with plate-bound anti-CD3 and CD28 antibodies for 6 h.
Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity.
Sex, Specimen part
View SamplesThe immune mechanisms that control resistance vs. susceptibility to mycobacterial infection in humans were investigated by studying leprosy skin lesions, the site where the battle between the host and the pathogen is joined. Using an integrative genomics approach, we found an inverse correlation between of IFN-beta and IFN-gamma gene expression programs at the site of disease. The Type II IFN, IFN-gamma and its downstream vitamin D-dependent antimicrobial genes were preferentially expressed in the lesions from patients with the self-healing tuberculoid form of the disease and mediated antimicrobial activity against the pathogen, Mycobacterium leprae in vitro. In contrast, the Type I IFN, IFN-beta and its downstream genes, including IL-27 and IL-10, were induced in monocytes by M. leprae in vitro, and were preferentially expressed in the lesions of disseminated and progressive lepromatous form. The IFN-gamma induced macrophage antimicrobial response was inhibited by IFN-beta/IL-10, by a mechanism involving blocking the generation of bioactive 1,25-dihyroxy vitamin D as well as inhibiting induction of antimicrobial peptides cathelicidin and DEFB4. The ability of IFN-B to inhibit the IFN-gamma induced vitamin D pathway including antimicrobial activity was reversed by neutralization of IL-10, suggesting a possible target for therapeutic intervention. Finally, a common IFN-beta and IL-10 gene signature was identified in both the skin lesions of leprosy patients and in the peripheral blood of active tuberculosis patients. Together these data suggest that the ability of IFN-beta to downregulate protective IFN-gamma responses provides one general mechanism by which some bacterial pathogens of humans evade protective host responses and contribute to pathogenesis.
Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses.
Specimen part, Subject
View SamplesFluorine-18-fluoro-2-deoxy-D-glucose (FDG) is widely used as positron-emission-tomography (PET) radiotracer for the detection and staging of human cancer. Tumor uptake of FDG varies substantially between different cancer types and between patients with the same tumor type. The molecular basis for this heterogeneity is unknown. Using cancer cell lines and primary human tumors of distinct histologic origins, we here show that increased FDG uptake is universally associated with coordinate upregulation of genes within the glycolysis, pentose-phosphate, and other related metabolic pathways. In primary human breast cancers, this FDG signature shows significant overlap with established breast cancer signatures for the basal-like disease subtype and poor prognosis. FDG high breast cancer showed significantly more gene copy number alterations genome wide than FDG low cancers. About 50 % of primary breast cancers with high FDG uptake and FDG gene expression signature show DNA copy gain encompassing the c-myc gene locus and express gene sets regulated by the transcription factor MYC. Our data shows that FDG-PET marks a distinct subset of basal-like human breast cancer which is characterized by MYC and prognostically unfavorable gene expression signatures, suggesting that FDG-PET imaging may be useful to risk-stratify patients with locally advanced breast cancer.
18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
Specimen part, Treatment
View SamplesThe recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1) which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen dose-dependently blocked the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9M3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant - but not IDH1-wildtype glioma cells without appreciable changes in genome wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
Specimen part, Treatment
View SamplesWe used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.
Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.
Cell line
View SamplesDuplicated genes escape gene loss by conferring a dosage benefit or evolving diverged functions. The yeast Saccharomyces cerevisiae contains many duplicated genes encoding ribosomal proteins. Prior studies have suggested that these duplicated proteins are functionally redundant and affect cellular processes in proportion to their expression. In contrast, through studies of ASH1 mRNA in yeast, we demonstrate paralog-specific requirements for the translation of localized mRNAs. Intriguingly, these paralog-specific effects are limited to a distinct subset of duplicated ribosomal proteins. Moreover, transcriptional and phenotypic profiling of cells lacking specific ribosomal proteins reveals differences between the functional roles of ribosomal protein paralogs that extend beyond effects on mRNA localization. Finally, we show that ribosomal protein paralogs exhibit differential requirements for assembly and localization. Together, our data indicate complex specialization of ribosomal proteins for specific cellular processes, and support the existence of a ribosomal code.
Functional specificity among ribosomal proteins regulates gene expression.
No sample metadata fields
View SamplesDisruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion.
Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart.
Sex, Specimen part
View Samples