We investigated the effects of diabetes, physical training, and their combination on the gene expression of cardiac muscle. Mice were divided to control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups performed 1, 3, or 5 weeks of endurance training on a motor-driven treadmill. Muscle samples from T and DT groups together with respective controls were collected 24 hours after the last training session. Gene expression of cardiac muscles were analyzed using Affymetrix Gene chip MG U74Av2 (Affymetrix , Inc., Santa Clara, CA).
Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle.
No sample metadata fields
View SamplesExperiment protocol:
Effects of streptozotocin-induced diabetes and physical training on gene expression of extracellular matrix proteins in mouse skeletal muscle.
No sample metadata fields
View SamplesExperience-dependent plasticity (EDP) is essential for anatomical and functional maturation of sensory circuits during development and can be readily studied is the rodent barrel cortex. Using this model we aimed to uncover changes on the transcriptome level and applied RNA sequencing upon altered sensory experience in juvenile mice in a cortical column and layer specific manner. From column- and layer-specific barrel cortical tissue, high quality RNA was purified and sequenced. The current dataset entails an average of 50 million paired-end reads per sample, 75 base pairs in length. Overall design: Wild type mice were deprived of their C-row whiskers from P12 until P23-P24, after which acute brain slices were prepared and tissues were excised from L2/3 and L4 from specific barrel columns. RNA isolated from these tissue sections was then subjected to RNA-sequencing.
Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
Cell line, Subject
View SamplesPatients with tuberous sclerosis complex (TSC) develop hamartomas containing biallelic inactivating mutations in either TSC1 or TSC2, resulting in mammalian target of rapamycin (mTOR) activation. Hamartomas overgrow epithelial and mesenchymal cells in TSC skin. The pathogenetic mechanisms for these changes had not been investigated, and the existence or location of cells with biallelic mutations (two-hit cells) that resulted in mTOR activation was unclear. We compared TSC skin hamartomas (facial angiofibromas and periungual fibromas) to normal-appearing skin of the same patient, and observed more proliferation and mTOR activation in hamartoma epidermis. Two-hit cells were not detected in the epidermis. Fibroblast-like cells in the dermis, however, exhibited allelic deletion of TSC2, in both touch preparations of fresh tumor samples and cells grown from TSC skin tumors, suggesting that increased epidermal proliferation and mTOR activation were not caused by second-hit mutations in the keratinocytes but by mesenchymal-epithelial interactions. Gene expression arrays, used to identify potential paracrine factors released by mesenchymal cells, revealed more epiregulin mRNA in fibroblast-like angiofibroma and periungual fibroma cells than in fibroblasts from normal-appearing skin of the same patient. Elevation of epiregulin mRNA was confirmed using real-time PCR, and increased amounts of epiregulin protein were demonstrated using immunoprecipitation and ELISA. Epiregulin stimulated keratinocyte proliferation and phosphorylation of ribosomal protein S6 in vitro. These results suggest that hamartomatous TSC skin tumors are induced by paracrine factors released by two-hit cells in the dermis, and that proliferation with mTOR activation of the overlying epidermis is an effect of epiregulin.
Mesenchymal-epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas.
Sex, Specimen part
View SamplesWe used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.
Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.
Cell line
View SamplesOsteosarcoma (OS) is the malignant bone tumor with a high tendency to metastasize to the lung, where the molecular mechanisms are unclear. The mouse OS cell line LM8 has been isolated originally from the Dunn OS cell line by in vivo selection as a subline with a high metastatic potential to the lung.
Stable knockdown of S100A4 suppresses cell migration and metastasis of osteosarcoma.
Cell line
View SamplesHuman Tregs isolated from PBMCs were cultured in the absence or presence of IL-12 (20ng/ml) for four days and were performed mRNA-seq. Overall design: mRNA profiles of human Treg stimulated with IL-12 (Th1 condition)
Activated β-catenin in Foxp3<sup>+</sup> regulatory T cells links inflammatory environments to autoimmunity.
Age, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development.
Specimen part, Cell line, Treatment
View SamplesEWS-FLI1, a multi-functional fusion oncogene, is exclusively detectable in Ewing sarcomas. However, previous studies reported that a subset of osteosarcomas also harbor EWS-ETS family fusion, suggesting that the fusion gene may be involved in the development of a particular type of osteosarcomas. Here using the doxycycline inducible EWS-FLI1 system, we established an EWS-FLI1-dependent osteosarcoma model from murine bone marrow stromal cells. We revealed that the withdrawal of EWS-FLI1 expression enhances the osteogenic differentiation of sarcoma cells, leading to mature bone formation. Taking advantage of induced pluripotent stem cell (iPSC) technology, we also showed that the sarcoma-derived iPSCs with cancer-related genetic abnormalities exhibited the impaired differentiation program of osteogenic lineage irrespective of the EWS-FLI1 expression. Finally, we demonstrated that EWS-FLI1 contributed to in vitro sarcoma development from the sarcoma-iPSCs after osteogenic differentiation. These findings demonstrated that modulating cellular differentiation is fundamental principle of the EWS-FLI1-induced osteosarcoma development. Furthermore, the in vitro cancer model using sarcoma-iPSCs should provide a novel platform for dissecting relationship between cancer genome and cellular differentiation.
An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development.
Specimen part, Cell line, Treatment
View SamplesRNA sequencing was performed to examine differential gene expression profiles in the ring gland of PG-specific Séance RNAi animals versus control. Overall design: Drosophila larvae with PG-specific knockdown of Séance and control animals were carefully staged at the larval L2/L3 molt. Ring glands were dissected at 44 hours L3. RNA isolated from ring glands were subject to RNA sequencing. Differential gene expression profiles were compared between control and RNAi animals.
Cooperative Control of Ecdysone Biosynthesis in <i>Drosophila</i> by Transcription Factors Séance, Ouija Board, and Molting Defective.
Specimen part, Subject
View Samples