Analysis of the transcriptome of dry hda9-1 mutant seeds with those of Col wild-type seeds, using Affymetrix GeneChip Arabidopsis ATH1 Genome Array.
HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds.
Specimen part
View SamplesMutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, though, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on upregulation of the transcription factor ZEB1 and downregulation of the mir-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis
Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).
Cell line
View SamplesBackground. Multiple myeloma (MM) cells depend on the bone marrow (BM) niche for growth and survival. However, the tumor genes regulated by the niche are largely unknown.
Niche-modulated and niche-modulating genes in bone marrow cells.
Disease, Disease stage, Time
View SamplesGene expression profile (GEP) was analyzed in bone marrow (BM) samples from patients with leukemia or leukemic phase of lymphoma at different time points following aspiration. Among numerous changes in GEP evolved over time a discrete subset of > 60 genes exhibited prompt and sustained switch in expression consistently. Similar results were discovered recently in BM samples from patients with multiple myeloma (GSE36036). GEP was also examined in peripheral blood as well as in BM samples depleted of red blood cells (=WBC) and in cultured cells from some of the patients.
Niche-modulated and niche-modulating genes in bone marrow cells.
Specimen part, Disease
View SamplesVCaP cells expressing inducible shRNAs for either ERG or a non-targeting control were treated with Doxycycline for 1, 3, 7 and 10 days prior to collection
TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.
No sample metadata fields
View SamplesA transgenic TMPRSS2:ERG mouse model was engineered in FVB background and compared to its wildtype counterpart in the absence of any treatment This experiment is designed to look at ERG-dependent changes in phenotype and gene expression Overall design: A loxP-GFP-loxP-hERG exon 4-11 cassette was inserted into a BAC clone containing the TMPRSS2 locus using a recombineering kit. This modified BAC was used for pronuclear injection and generation of germline-transmitting mice. One line expressing high GFP was used for pronuclear injection of Cre protein and one sub-line that transmitted the TMPRSS2:ERG transgene into the germline was subsequently bred to homozygosity.
TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.
No sample metadata fields
View SamplesSubpopulations of human fetal thymocyte and circulating nave T cells were obtained through FACS sorting, including CD3-CD4+CD8- intrathymic T progenitor cells (ITTP), CD3intCD4+CD8+ "double positive" thymocytes (DP), CD3highCD4+CD8- "single positive" thymocytes (SP4), CD3+CD4+CD8-CD45RA+CD62L+ nave T cells from cord blood (CB4+), and CD3+CD4+CD8-CD45RA+CD62L+ nave T cells from adult blood (AB4+).
Gene expression profiles during human CD4+ T cell differentiation.
No sample metadata fields
View SamplesMany thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
No sample metadata fields
View Samples5-methylcytosine (5mC) regulates multiple cellular processes and is faithfully maintained following DNA replication. Ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Interestingly, UHRF1 has a paralog UHRF2 that has similar sequence and domain architecture, but the biological function of UHRF2 is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. To explore possible mechanism beyond these phenomenon, we utilized high-throughput sequencing to identify global expression changes in Uhrf2 knockout mice brains. In addition, we explored genome-wide 5mc profiles in these samples to examine if UHRF2 regulates 5mc levels in specific genome loci. Overall design: Examination of global gene expressions in brains of wild type and Uhrf2 knockout mice by RNA-seq.
UHRF2 regulates local 5-methylcytosine and suppresses spontaneous seizures.
Specimen part, Subject
View SamplesLNCaP-derived MDV3100-resistant clones were treated with MDV3100 for 24h prior to collection
An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide).
Cell line
View Samples